{"title":"利用生物制造技术培养具有内在结构粘合剂的强多糖来源的可食用秸秆","authors":"Huai-Bin Yang, Yu-Hong Ruan, Zhao-Xiang Liu, Zhang-Chi Ling, Zhan Zhou, Xiang Zhao, Qing-Fang Guan, Shu-Hong Yu","doi":"10.1021/acs.nanolett.4c06275","DOIUrl":null,"url":null,"abstract":"Developing food-related materials via biomanufacturing is expected to overcome the risks of microplastics and poly- and perfluoroalkyl substances posed by traditional materials such as plastics. Here, we report a biomanufacturing strategy to prepare high-performance polysaccharide-derived edible (PSE) straws. Starch is uniformly integrated <i>in situ</i> into the three-dimensional cellulose nanonetwork produced by bacteria during biosynthesis. The starch undergoes phase transitions to fill the pores of the cellulose nanonetwork as an inherent structural binder that reinforces the interpenetrating network and greatly enhances the interlayer bonding of the PSE straws. Notably, the biomanufacturing network structure and high-density hydrogen bonds endow PSE straws with outstanding strength, modulus, and thermal stability, surpassing those of commercially available straws. This biomanufacturing strategy can fabricate edible straws as a healthy substitute for plastics and pave the way for developing new kinds of eco-friendly and high-performance materials via biosynthesis.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"29 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growing Strong Polysaccharide-Derived Edible Straws with an Inherent Structural Binder via Biomanufacturing\",\"authors\":\"Huai-Bin Yang, Yu-Hong Ruan, Zhao-Xiang Liu, Zhang-Chi Ling, Zhan Zhou, Xiang Zhao, Qing-Fang Guan, Shu-Hong Yu\",\"doi\":\"10.1021/acs.nanolett.4c06275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing food-related materials via biomanufacturing is expected to overcome the risks of microplastics and poly- and perfluoroalkyl substances posed by traditional materials such as plastics. Here, we report a biomanufacturing strategy to prepare high-performance polysaccharide-derived edible (PSE) straws. Starch is uniformly integrated <i>in situ</i> into the three-dimensional cellulose nanonetwork produced by bacteria during biosynthesis. The starch undergoes phase transitions to fill the pores of the cellulose nanonetwork as an inherent structural binder that reinforces the interpenetrating network and greatly enhances the interlayer bonding of the PSE straws. Notably, the biomanufacturing network structure and high-density hydrogen bonds endow PSE straws with outstanding strength, modulus, and thermal stability, surpassing those of commercially available straws. This biomanufacturing strategy can fabricate edible straws as a healthy substitute for plastics and pave the way for developing new kinds of eco-friendly and high-performance materials via biosynthesis.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c06275\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06275","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Growing Strong Polysaccharide-Derived Edible Straws with an Inherent Structural Binder via Biomanufacturing
Developing food-related materials via biomanufacturing is expected to overcome the risks of microplastics and poly- and perfluoroalkyl substances posed by traditional materials such as plastics. Here, we report a biomanufacturing strategy to prepare high-performance polysaccharide-derived edible (PSE) straws. Starch is uniformly integrated in situ into the three-dimensional cellulose nanonetwork produced by bacteria during biosynthesis. The starch undergoes phase transitions to fill the pores of the cellulose nanonetwork as an inherent structural binder that reinforces the interpenetrating network and greatly enhances the interlayer bonding of the PSE straws. Notably, the biomanufacturing network structure and high-density hydrogen bonds endow PSE straws with outstanding strength, modulus, and thermal stability, surpassing those of commercially available straws. This biomanufacturing strategy can fabricate edible straws as a healthy substitute for plastics and pave the way for developing new kinds of eco-friendly and high-performance materials via biosynthesis.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.