Zaigham Abbas, Gul Hassan, Muhammad Umair Khan, Haider Abbas, Basheer Ahmad, Ahmed Shuja, Memoon Sajid, Jinho Bae and Changhwan Choi
{"title":"聚氨酯填充石墨烯涂层蜘蛛丝浸铸用于高拉伸应变传感器。","authors":"Zaigham Abbas, Gul Hassan, Muhammad Umair Khan, Haider Abbas, Basheer Ahmad, Ahmed Shuja, Memoon Sajid, Jinho Bae and Changhwan Choi","doi":"10.1039/D4TB01164C","DOIUrl":null,"url":null,"abstract":"<p >In recent years, naturally occurring materials have gained tremendous attention for their potential in the fabrication of advanced wearable electronic devices. Among these materials, spider silk is well-known for its outstanding mechanical strength and physical properties. Leveraging these attributes, a highly stretchable strain sensor was developed in this work utilizing polyurethane packed graphene-coated spider silk fabricated through a simple dip-casting method. The proposed sensor demonstrated remarkable mechanical strength, excellent sensitivity to strain and impressive recovery properties, attributed to the self-healing abilities of the polyurethane packaging. Additionally, polyurethane served as a protective layer, safeguarding the sensor from external environmental parameters and improving the lifetime of the device. The fabricated devices retained their performance parameters and other properties at up to 40% stretchability. FE-SEM and EDS elemental mapping were used to confirm the morphological properties and the homogenous coating of graphene on the spider silk fibers. The sensors were then attached to different parts of the human body to monitor pulse-rate, joint angles and posture, demonstrating outstanding results. This work paves the way for the design and fabrication of future wearable sensors using naturally occurring materials for advanced electronic applications.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 10","pages":" 3437-3447"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyurethane packed graphene-coated spider silk by dip-casting for a highly stretchable strain sensor\",\"authors\":\"Zaigham Abbas, Gul Hassan, Muhammad Umair Khan, Haider Abbas, Basheer Ahmad, Ahmed Shuja, Memoon Sajid, Jinho Bae and Changhwan Choi\",\"doi\":\"10.1039/D4TB01164C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, naturally occurring materials have gained tremendous attention for their potential in the fabrication of advanced wearable electronic devices. Among these materials, spider silk is well-known for its outstanding mechanical strength and physical properties. Leveraging these attributes, a highly stretchable strain sensor was developed in this work utilizing polyurethane packed graphene-coated spider silk fabricated through a simple dip-casting method. The proposed sensor demonstrated remarkable mechanical strength, excellent sensitivity to strain and impressive recovery properties, attributed to the self-healing abilities of the polyurethane packaging. Additionally, polyurethane served as a protective layer, safeguarding the sensor from external environmental parameters and improving the lifetime of the device. The fabricated devices retained their performance parameters and other properties at up to 40% stretchability. FE-SEM and EDS elemental mapping were used to confirm the morphological properties and the homogenous coating of graphene on the spider silk fibers. The sensors were then attached to different parts of the human body to monitor pulse-rate, joint angles and posture, demonstrating outstanding results. This work paves the way for the design and fabrication of future wearable sensors using naturally occurring materials for advanced electronic applications.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 10\",\"pages\":\" 3437-3447\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01164c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01164c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Polyurethane packed graphene-coated spider silk by dip-casting for a highly stretchable strain sensor
In recent years, naturally occurring materials have gained tremendous attention for their potential in the fabrication of advanced wearable electronic devices. Among these materials, spider silk is well-known for its outstanding mechanical strength and physical properties. Leveraging these attributes, a highly stretchable strain sensor was developed in this work utilizing polyurethane packed graphene-coated spider silk fabricated through a simple dip-casting method. The proposed sensor demonstrated remarkable mechanical strength, excellent sensitivity to strain and impressive recovery properties, attributed to the self-healing abilities of the polyurethane packaging. Additionally, polyurethane served as a protective layer, safeguarding the sensor from external environmental parameters and improving the lifetime of the device. The fabricated devices retained their performance parameters and other properties at up to 40% stretchability. FE-SEM and EDS elemental mapping were used to confirm the morphological properties and the homogenous coating of graphene on the spider silk fibers. The sensors were then attached to different parts of the human body to monitor pulse-rate, joint angles and posture, demonstrating outstanding results. This work paves the way for the design and fabrication of future wearable sensors using naturally occurring materials for advanced electronic applications.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices