结合间歇期颅内脑电图和功能磁共振成像计算动态静息状态指数,用于手术结果验证。

Frontiers in network physiology Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI:10.3389/fnetp.2024.1491967
Varina L Boerwinkle, Kristin M Gunnarsdottir, Bethany L Sussman, Sarah N Wyckoff, Emilio G Cediel, Belfin Robinson, William R Reuther, Aryan Kodali, Sridevi V Sarma
{"title":"结合间歇期颅内脑电图和功能磁共振成像计算动态静息状态指数,用于手术结果验证。","authors":"Varina L Boerwinkle, Kristin M Gunnarsdottir, Bethany L Sussman, Sarah N Wyckoff, Emilio G Cediel, Belfin Robinson, William R Reuther, Aryan Kodali, Sridevi V Sarma","doi":"10.3389/fnetp.2024.1491967","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accurate localization of the seizure onset zone (SOZ) is critical for successful epilepsy surgery but remains challenging with current techniques. We developed a novel seizure onset network characterization tool that combines dynamic biomarkers of resting-state intracranial stereoelectroencephalography (rs-iEEG) and resting-state functional magnetic resonance imaging (rs-fMRI), vetted against surgical outcomes. This approach aims to reduce reliance on capturing seizures during invasive monitoring to pinpoint the SOZ.</p><p><strong>Methods: </strong>We computed the source-sink index (SSI) from rs-iEEG for all implanted regions and from rs-fMRI for regions identified as potential SOZs by noninvasive modalities. The SSI scores were evaluated in 17 pediatric drug-resistant epilepsy (DRE) patients (ages 3-15 years) by comparing outcomes classified as successful (Engel I or II) versus unsuccessful (Engel III or IV) at 1 year post-surgery.</p><p><strong>Results: </strong>Of 30 reviewed patients, 17 met the inclusion criteria. The combined dynamic index (im-DNM) integrating rs-iEEG and rs-fMRI significantly differentiated good (Engel I-II) from poor (Engel III-IV) surgical outcomes, outperforming the predictive accuracy of individual biomarkers from either modality alone.</p><p><strong>Conclusion: </strong>The combined dynamic network model demonstrated superior predictive performance than standalone rs-fMRI or rs-iEEG indices.</p><p><strong>Significance: </strong>By leveraging interictal data from two complementary modalities, this combined approach has the potential to improve epilepsy surgical outcomes, increase surgical candidacy, and reduce the duration of invasive monitoring.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"4 ","pages":"1491967"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining interictal intracranial EEG and fMRI to compute a dynamic resting-state index for surgical outcome validation.\",\"authors\":\"Varina L Boerwinkle, Kristin M Gunnarsdottir, Bethany L Sussman, Sarah N Wyckoff, Emilio G Cediel, Belfin Robinson, William R Reuther, Aryan Kodali, Sridevi V Sarma\",\"doi\":\"10.3389/fnetp.2024.1491967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Accurate localization of the seizure onset zone (SOZ) is critical for successful epilepsy surgery but remains challenging with current techniques. We developed a novel seizure onset network characterization tool that combines dynamic biomarkers of resting-state intracranial stereoelectroencephalography (rs-iEEG) and resting-state functional magnetic resonance imaging (rs-fMRI), vetted against surgical outcomes. This approach aims to reduce reliance on capturing seizures during invasive monitoring to pinpoint the SOZ.</p><p><strong>Methods: </strong>We computed the source-sink index (SSI) from rs-iEEG for all implanted regions and from rs-fMRI for regions identified as potential SOZs by noninvasive modalities. The SSI scores were evaluated in 17 pediatric drug-resistant epilepsy (DRE) patients (ages 3-15 years) by comparing outcomes classified as successful (Engel I or II) versus unsuccessful (Engel III or IV) at 1 year post-surgery.</p><p><strong>Results: </strong>Of 30 reviewed patients, 17 met the inclusion criteria. The combined dynamic index (im-DNM) integrating rs-iEEG and rs-fMRI significantly differentiated good (Engel I-II) from poor (Engel III-IV) surgical outcomes, outperforming the predictive accuracy of individual biomarkers from either modality alone.</p><p><strong>Conclusion: </strong>The combined dynamic network model demonstrated superior predictive performance than standalone rs-fMRI or rs-iEEG indices.</p><p><strong>Significance: </strong>By leveraging interictal data from two complementary modalities, this combined approach has the potential to improve epilepsy surgical outcomes, increase surgical candidacy, and reduce the duration of invasive monitoring.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"4 \",\"pages\":\"1491967\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2024.1491967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2024.1491967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确定位癫痫发作区(SOZ)是成功的癫痫手术的关键,但目前的技术仍然具有挑战性。我们开发了一种新的癫痫发作网络表征工具,该工具结合了静息状态颅内立体脑电图(rs-iEEG)和静息状态功能磁共振成像(rs-fMRI)的动态生物标志物,对手术结果进行了审查。该方法旨在减少在侵入性监测期间对捕获癫痫发作的依赖,以确定SOZ。方法:我们通过rs-iEEG计算了所有植入区域的源库指数(SSI),并通过rs-fMRI计算了通过无创方式确定为潜在soz的区域。通过比较手术后1年成功(Engel I或II)与不成功(Engel III或IV)的结果,对17例儿童耐药癫痫(DRE)患者(3-15岁)的SSI评分进行评估。结果:30例患者中,17例符合纳入标准。结合rs-iEEG和rs-fMRI的联合动态指数(im-DNM)显着区分良好(Engel I-II)和不良(Engel III-IV)手术结果,优于单独使用任何一种方式的单个生物标志物的预测准确性。结论:联合动态网络模型比单独rs-fMRI或rs-iEEG指标具有更好的预测效果。意义:通过利用两种互补模式的间期数据,这种联合方法有可能改善癫痫手术结果,增加手术候选性,并缩短有创监测的持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining interictal intracranial EEG and fMRI to compute a dynamic resting-state index for surgical outcome validation.

Introduction: Accurate localization of the seizure onset zone (SOZ) is critical for successful epilepsy surgery but remains challenging with current techniques. We developed a novel seizure onset network characterization tool that combines dynamic biomarkers of resting-state intracranial stereoelectroencephalography (rs-iEEG) and resting-state functional magnetic resonance imaging (rs-fMRI), vetted against surgical outcomes. This approach aims to reduce reliance on capturing seizures during invasive monitoring to pinpoint the SOZ.

Methods: We computed the source-sink index (SSI) from rs-iEEG for all implanted regions and from rs-fMRI for regions identified as potential SOZs by noninvasive modalities. The SSI scores were evaluated in 17 pediatric drug-resistant epilepsy (DRE) patients (ages 3-15 years) by comparing outcomes classified as successful (Engel I or II) versus unsuccessful (Engel III or IV) at 1 year post-surgery.

Results: Of 30 reviewed patients, 17 met the inclusion criteria. The combined dynamic index (im-DNM) integrating rs-iEEG and rs-fMRI significantly differentiated good (Engel I-II) from poor (Engel III-IV) surgical outcomes, outperforming the predictive accuracy of individual biomarkers from either modality alone.

Conclusion: The combined dynamic network model demonstrated superior predictive performance than standalone rs-fMRI or rs-iEEG indices.

Significance: By leveraging interictal data from two complementary modalities, this combined approach has the potential to improve epilepsy surgical outcomes, increase surgical candidacy, and reduce the duration of invasive monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信