Isha Kansal, Vikas Khullar, Preeti Sharma, Supreet Singh, Junainah Abd Hamid, A Johnson Santhosh
{"title":"基于多模型视觉特征嵌入与选择的高效眼病分类方法。","authors":"Isha Kansal, Vikas Khullar, Preeti Sharma, Supreet Singh, Junainah Abd Hamid, A Johnson Santhosh","doi":"10.1038/s41598-024-84922-y","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection of ocular diseases is vital to preventing severe complications, yet it remains challenging due to the need for skilled specialists, complex imaging processes, and limited resources. Automated solutions are essential to enhance diagnostic precision and support clinical workflows. This study presents a deep learning-based system for automated classification of ocular diseases using the Ocular Disease Intelligent Recognition (ODIR) dataset. The dataset includes 5,000 patient fundus images labeled into eight categories of ocular diseases. Initial experiments utilized transfer learning models such as DenseNet201, EfficientNetB3, and InceptionResNetV2. To optimize computational efficiency, a novel two-level feature selection framework combining Linear Discriminant Analysis (LDA) and advanced neural network classifiers-Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM)-was introduced. Among the tested approaches, the \"Combined Data\" strategy utilizing features from all three models achieved the best results, with the BiLSTM classifier attaining 100% accuracy, precision, and recall on the training set, and over 98% performance on the validation set. The LDA-based framework significantly reduced computational complexity while enhancing classification accuracy. The proposed system demonstrates a scalable, efficient solution for ocular disease detection, offering robust support for clinical decision-making. By bridging the gap between clinical demands and technological capabilities, it has the potential to alleviate the workload of ophthalmologists, particularly in resource-constrained settings, and improve patient outcomes globally.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5157"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814330/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple model visual feature embedding and selection method for an efficient oncular disease classification.\",\"authors\":\"Isha Kansal, Vikas Khullar, Preeti Sharma, Supreet Singh, Junainah Abd Hamid, A Johnson Santhosh\",\"doi\":\"10.1038/s41598-024-84922-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early detection of ocular diseases is vital to preventing severe complications, yet it remains challenging due to the need for skilled specialists, complex imaging processes, and limited resources. Automated solutions are essential to enhance diagnostic precision and support clinical workflows. This study presents a deep learning-based system for automated classification of ocular diseases using the Ocular Disease Intelligent Recognition (ODIR) dataset. The dataset includes 5,000 patient fundus images labeled into eight categories of ocular diseases. Initial experiments utilized transfer learning models such as DenseNet201, EfficientNetB3, and InceptionResNetV2. To optimize computational efficiency, a novel two-level feature selection framework combining Linear Discriminant Analysis (LDA) and advanced neural network classifiers-Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM)-was introduced. Among the tested approaches, the \\\"Combined Data\\\" strategy utilizing features from all three models achieved the best results, with the BiLSTM classifier attaining 100% accuracy, precision, and recall on the training set, and over 98% performance on the validation set. The LDA-based framework significantly reduced computational complexity while enhancing classification accuracy. The proposed system demonstrates a scalable, efficient solution for ocular disease detection, offering robust support for clinical decision-making. By bridging the gap between clinical demands and technological capabilities, it has the potential to alleviate the workload of ophthalmologists, particularly in resource-constrained settings, and improve patient outcomes globally.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"5157\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814330/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-84922-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84922-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Multiple model visual feature embedding and selection method for an efficient oncular disease classification.
Early detection of ocular diseases is vital to preventing severe complications, yet it remains challenging due to the need for skilled specialists, complex imaging processes, and limited resources. Automated solutions are essential to enhance diagnostic precision and support clinical workflows. This study presents a deep learning-based system for automated classification of ocular diseases using the Ocular Disease Intelligent Recognition (ODIR) dataset. The dataset includes 5,000 patient fundus images labeled into eight categories of ocular diseases. Initial experiments utilized transfer learning models such as DenseNet201, EfficientNetB3, and InceptionResNetV2. To optimize computational efficiency, a novel two-level feature selection framework combining Linear Discriminant Analysis (LDA) and advanced neural network classifiers-Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM)-was introduced. Among the tested approaches, the "Combined Data" strategy utilizing features from all three models achieved the best results, with the BiLSTM classifier attaining 100% accuracy, precision, and recall on the training set, and over 98% performance on the validation set. The LDA-based framework significantly reduced computational complexity while enhancing classification accuracy. The proposed system demonstrates a scalable, efficient solution for ocular disease detection, offering robust support for clinical decision-making. By bridging the gap between clinical demands and technological capabilities, it has the potential to alleviate the workload of ophthalmologists, particularly in resource-constrained settings, and improve patient outcomes globally.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.