Elisabeth Ailer, Christian L Müller, Niki Kilbertus
{"title":"成分处理的工具变量估计。","authors":"Elisabeth Ailer, Christian L Müller, Niki Kilbertus","doi":"10.1038/s41598-025-89204-9","DOIUrl":null,"url":null,"abstract":"<p><p>Many scientific datasets are compositional in nature. Important biological examples include species abundances in ecology, cell-type compositions derived from single-cell sequencing data, and amplicon abundance data in microbiome research. Here, we provide a causal view on compositional data in an instrumental variable setting where the composition acts as the cause. First, we crisply articulate potential pitfalls for practitioners regarding the interpretation of compositional causes from the viewpoint of interventions and warn against attributing causal meaning to common summary statistics such as diversity indices in microbiome data analysis. We then advocate for and develop multivariate methods using statistical data transformations and regression techniques that take the special structure of the compositional sample space into account while still yielding scientifically interpretable results. In a comparative analysis on synthetic and real microbiome data we show the advantages and limitations of our proposal. We posit that our analysis provides a useful framework and guidance for valid and informative cause-effect estimation in the context of compositional data.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5158"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814326/pdf/","citationCount":"0","resultStr":"{\"title\":\"Instrumental variable estimation for compositional treatments.\",\"authors\":\"Elisabeth Ailer, Christian L Müller, Niki Kilbertus\",\"doi\":\"10.1038/s41598-025-89204-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many scientific datasets are compositional in nature. Important biological examples include species abundances in ecology, cell-type compositions derived from single-cell sequencing data, and amplicon abundance data in microbiome research. Here, we provide a causal view on compositional data in an instrumental variable setting where the composition acts as the cause. First, we crisply articulate potential pitfalls for practitioners regarding the interpretation of compositional causes from the viewpoint of interventions and warn against attributing causal meaning to common summary statistics such as diversity indices in microbiome data analysis. We then advocate for and develop multivariate methods using statistical data transformations and regression techniques that take the special structure of the compositional sample space into account while still yielding scientifically interpretable results. In a comparative analysis on synthetic and real microbiome data we show the advantages and limitations of our proposal. We posit that our analysis provides a useful framework and guidance for valid and informative cause-effect estimation in the context of compositional data.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"5158\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814326/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-89204-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89204-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Instrumental variable estimation for compositional treatments.
Many scientific datasets are compositional in nature. Important biological examples include species abundances in ecology, cell-type compositions derived from single-cell sequencing data, and amplicon abundance data in microbiome research. Here, we provide a causal view on compositional data in an instrumental variable setting where the composition acts as the cause. First, we crisply articulate potential pitfalls for practitioners regarding the interpretation of compositional causes from the viewpoint of interventions and warn against attributing causal meaning to common summary statistics such as diversity indices in microbiome data analysis. We then advocate for and develop multivariate methods using statistical data transformations and regression techniques that take the special structure of the compositional sample space into account while still yielding scientifically interpretable results. In a comparative analysis on synthetic and real microbiome data we show the advantages and limitations of our proposal. We posit that our analysis provides a useful framework and guidance for valid and informative cause-effect estimation in the context of compositional data.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.