Hayley M. Whitson , Ivan M. Rosado-Mendez , Timothy J. Hall
{"title":"产生杂乱的幻影材料。第二部分:常规超声衰减估计与正则化超声衰减估计的应用比较。","authors":"Hayley M. Whitson , Ivan M. Rosado-Mendez , Timothy J. Hall","doi":"10.1016/j.ultrasmedbio.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>A particular challenge in clinical ultrasound imaging is acoustic clutter, which arises from the heterogeneity of the speed of sound and reverberations between layered tissue types. Although clutter is common when imaging through complex tissue such as the abdominal wall, few studies have investigated its effects on quantitative ultrasound (QUS) parameter estimation. The ultrasonic attenuation coefficient (AC) has shown promise as a biomarker for multiple applications. Recently, multiple regularized methods of AC estimation have been developed; however, their performance must be evaluated in clinically relevant scenarios such as in the presence of clutter. In a companion paper to this work, a material that produces clutter similar to that seen in clinical imaging was developed and characterized. Here, we utilize this clutter-generating phantom material to compare the bias and variance of AC estimates resulting from a conventional estimation method known as the spectral difference method (SDM) and a regularized method known as Analytical Global Regularized Backscatter Quantitative Ultrasound (ALGEBRA), which can either be implemented in 1D or 2D. A B-mode, target-based contrast-to-noise ratio was used to quantify the amount of clutter in data collected from a phantom with known AC. Estimation reliability was determined using the normalized root mean square error (NRMSE) and the percent bias. On average, 1D-ALGEBRA had a 22.86% smaller bias and a 32.19% smaller NRMSE than the SDM, while 2D-ALGEBRA had a 17.59% smaller bias and a 25.66% smaller NRMSE than the SDM. An analysis of variance model indicated that ALGEBRA is more robust to the presence of clutter than the SDM. Further statistical tests showed that the reduction in variance resulting from ALGEBRA was the main contributor to the reduction in NRMSE. This work demonstrates the utility of this clutter-generating phantom material in objective testing of QUS parameter estimation, as well as performance improvements obtained in phantoms with regularized methods from QUS parameter estimation in the presence of acoustic clutter.</div></div>","PeriodicalId":49399,"journal":{"name":"Ultrasound in Medicine and Biology","volume":"51 5","pages":"Pages 777-787"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clutter-Generating Phantom Material. Part II: Utilization in the Comparison of Conventional and Regularized Ultrasound Attenuation Estimation\",\"authors\":\"Hayley M. Whitson , Ivan M. Rosado-Mendez , Timothy J. Hall\",\"doi\":\"10.1016/j.ultrasmedbio.2025.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A particular challenge in clinical ultrasound imaging is acoustic clutter, which arises from the heterogeneity of the speed of sound and reverberations between layered tissue types. Although clutter is common when imaging through complex tissue such as the abdominal wall, few studies have investigated its effects on quantitative ultrasound (QUS) parameter estimation. The ultrasonic attenuation coefficient (AC) has shown promise as a biomarker for multiple applications. Recently, multiple regularized methods of AC estimation have been developed; however, their performance must be evaluated in clinically relevant scenarios such as in the presence of clutter. In a companion paper to this work, a material that produces clutter similar to that seen in clinical imaging was developed and characterized. Here, we utilize this clutter-generating phantom material to compare the bias and variance of AC estimates resulting from a conventional estimation method known as the spectral difference method (SDM) and a regularized method known as Analytical Global Regularized Backscatter Quantitative Ultrasound (ALGEBRA), which can either be implemented in 1D or 2D. A B-mode, target-based contrast-to-noise ratio was used to quantify the amount of clutter in data collected from a phantom with known AC. Estimation reliability was determined using the normalized root mean square error (NRMSE) and the percent bias. On average, 1D-ALGEBRA had a 22.86% smaller bias and a 32.19% smaller NRMSE than the SDM, while 2D-ALGEBRA had a 17.59% smaller bias and a 25.66% smaller NRMSE than the SDM. An analysis of variance model indicated that ALGEBRA is more robust to the presence of clutter than the SDM. Further statistical tests showed that the reduction in variance resulting from ALGEBRA was the main contributor to the reduction in NRMSE. This work demonstrates the utility of this clutter-generating phantom material in objective testing of QUS parameter estimation, as well as performance improvements obtained in phantoms with regularized methods from QUS parameter estimation in the presence of acoustic clutter.</div></div>\",\"PeriodicalId\":49399,\"journal\":{\"name\":\"Ultrasound in Medicine and Biology\",\"volume\":\"51 5\",\"pages\":\"Pages 777-787\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasound in Medicine and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301562925000079\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301562925000079","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Clutter-Generating Phantom Material. Part II: Utilization in the Comparison of Conventional and Regularized Ultrasound Attenuation Estimation
A particular challenge in clinical ultrasound imaging is acoustic clutter, which arises from the heterogeneity of the speed of sound and reverberations between layered tissue types. Although clutter is common when imaging through complex tissue such as the abdominal wall, few studies have investigated its effects on quantitative ultrasound (QUS) parameter estimation. The ultrasonic attenuation coefficient (AC) has shown promise as a biomarker for multiple applications. Recently, multiple regularized methods of AC estimation have been developed; however, their performance must be evaluated in clinically relevant scenarios such as in the presence of clutter. In a companion paper to this work, a material that produces clutter similar to that seen in clinical imaging was developed and characterized. Here, we utilize this clutter-generating phantom material to compare the bias and variance of AC estimates resulting from a conventional estimation method known as the spectral difference method (SDM) and a regularized method known as Analytical Global Regularized Backscatter Quantitative Ultrasound (ALGEBRA), which can either be implemented in 1D or 2D. A B-mode, target-based contrast-to-noise ratio was used to quantify the amount of clutter in data collected from a phantom with known AC. Estimation reliability was determined using the normalized root mean square error (NRMSE) and the percent bias. On average, 1D-ALGEBRA had a 22.86% smaller bias and a 32.19% smaller NRMSE than the SDM, while 2D-ALGEBRA had a 17.59% smaller bias and a 25.66% smaller NRMSE than the SDM. An analysis of variance model indicated that ALGEBRA is more robust to the presence of clutter than the SDM. Further statistical tests showed that the reduction in variance resulting from ALGEBRA was the main contributor to the reduction in NRMSE. This work demonstrates the utility of this clutter-generating phantom material in objective testing of QUS parameter estimation, as well as performance improvements obtained in phantoms with regularized methods from QUS parameter estimation in the presence of acoustic clutter.
期刊介绍:
Ultrasound in Medicine and Biology is the official journal of the World Federation for Ultrasound in Medicine and Biology. The journal publishes original contributions that demonstrate a novel application of an existing ultrasound technology in clinical diagnostic, interventional and therapeutic applications, new and improved clinical techniques, the physics, engineering and technology of ultrasound in medicine and biology, and the interactions between ultrasound and biological systems, including bioeffects. Papers that simply utilize standard diagnostic ultrasound as a measuring tool will be considered out of scope. Extended critical reviews of subjects of contemporary interest in the field are also published, in addition to occasional editorial articles, clinical and technical notes, book reviews, letters to the editor and a calendar of forthcoming meetings. It is the aim of the journal fully to meet the information and publication requirements of the clinicians, scientists, engineers and other professionals who constitute the biomedical ultrasonic community.