乙醇和尼古丁对mptp诱导的小鼠脑多巴胺和酪氨酸羟化酶耗竭的修复作用。

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Mostofa Jamal, Sella Takei, Ikuko Tsukamoto, Takanori Miki, Ken-Ichi Ohta, Md Zakir Hossain, Hiroshi Kinoshita
{"title":"乙醇和尼古丁对mptp诱导的小鼠脑多巴胺和酪氨酸羟化酶耗竭的修复作用。","authors":"Mostofa Jamal, Sella Takei, Ikuko Tsukamoto, Takanori Miki, Ken-Ichi Ohta, Md Zakir Hossain, Hiroshi Kinoshita","doi":"10.1007/s12640-025-00732-8","DOIUrl":null,"url":null,"abstract":"<p><p>Dopamine (DA) has long been considered a major factor in the development of Parkinson's disease (PD). Ethanol (EtOH) and nicotine (Nic), either alone or in combination, have been shown to affect nigrostriatal dopaminergic neuronal activity. Here, we investigate whether EtOH and Nic alone or in co-exposure can restore the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced depletion of dopamine (DA), DA metabolites, and tyrosine hydroxylase (TH) in the striatum and hippocampus of C57BL/6N mice. MPTP-treated mice were treated intraperitoneally with saline (control), EtOH (1.0-3.0 g/kg), Nic (0.5-2.0 mg/kg), or a combination of EtOH and Nic. Brain samples were collected 1 h after treatment. DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were measured by HPLC-ECD, while TH protein content and TH phosphorylation at Ser31 (pSer31 TH) were quantified by Western blot. EtOH (2.0 and 3.0 g/kg) alone reversed the effects of MPTP treatment in both studied brain regions, as evidenced by an increase in DA, DOPAC, and HVA contents, TH protein, and pSer31 TH compared to the MPTP group, indicating restorative effects on DA neurons in the MPTP model. Likewise, Nic (1.0 and 2.0 mg/kg) alone reversed MPTP treatment effects, with treated mice showing increased DA, DOPAC, and HVA contents, TH protein, and pSer31 TH compared to MPTP mice. Co-administration of EtOH (2.0 g/kg) and Nic (1.0 mg/kg) further increased DA, DOPAC and HVA tissue contents, TH protein, and pSer31 TH, indicating an additive effect. These results show that moderate to high doses of EtOH and Nic induce similar increases in brain DA and TH via TH phosphorylation activation in MPTP model mice. EtOH and Nic showed an additive effect in combination, suggesting that their co-application could be a potent therapeutic strategy for treating PD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"43 1","pages":"9"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restoration of MPTP-induced Dopamine and Tyrosine Hydroxylase Depletion in the Mouse Brain Through Ethanol and Nicotine.\",\"authors\":\"Mostofa Jamal, Sella Takei, Ikuko Tsukamoto, Takanori Miki, Ken-Ichi Ohta, Md Zakir Hossain, Hiroshi Kinoshita\",\"doi\":\"10.1007/s12640-025-00732-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dopamine (DA) has long been considered a major factor in the development of Parkinson's disease (PD). Ethanol (EtOH) and nicotine (Nic), either alone or in combination, have been shown to affect nigrostriatal dopaminergic neuronal activity. Here, we investigate whether EtOH and Nic alone or in co-exposure can restore the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced depletion of dopamine (DA), DA metabolites, and tyrosine hydroxylase (TH) in the striatum and hippocampus of C57BL/6N mice. MPTP-treated mice were treated intraperitoneally with saline (control), EtOH (1.0-3.0 g/kg), Nic (0.5-2.0 mg/kg), or a combination of EtOH and Nic. Brain samples were collected 1 h after treatment. DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were measured by HPLC-ECD, while TH protein content and TH phosphorylation at Ser31 (pSer31 TH) were quantified by Western blot. EtOH (2.0 and 3.0 g/kg) alone reversed the effects of MPTP treatment in both studied brain regions, as evidenced by an increase in DA, DOPAC, and HVA contents, TH protein, and pSer31 TH compared to the MPTP group, indicating restorative effects on DA neurons in the MPTP model. Likewise, Nic (1.0 and 2.0 mg/kg) alone reversed MPTP treatment effects, with treated mice showing increased DA, DOPAC, and HVA contents, TH protein, and pSer31 TH compared to MPTP mice. Co-administration of EtOH (2.0 g/kg) and Nic (1.0 mg/kg) further increased DA, DOPAC and HVA tissue contents, TH protein, and pSer31 TH, indicating an additive effect. These results show that moderate to high doses of EtOH and Nic induce similar increases in brain DA and TH via TH phosphorylation activation in MPTP model mice. EtOH and Nic showed an additive effect in combination, suggesting that their co-application could be a potent therapeutic strategy for treating PD.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\"43 1\",\"pages\":\"9\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-025-00732-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-025-00732-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,多巴胺(DA)一直被认为是帕金森病(PD)发展的主要因素。乙醇(EtOH)和尼古丁(Nic),单独或联合,已被证明影响黑质纹状体多巴胺能神经元的活动。在这里,我们研究了EtOH和Nic单独或共同暴露是否可以恢复C57BL/6N小鼠纹状体和海马中1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)诱导的多巴胺(DA)、DA代谢物和酪氨酸羟化酶(TH)的消耗。经mptp处理的小鼠分别腹腔注射生理盐水(对照组)、EtOH (1.0-3.0 g/kg)、Nic (0.5-2.0 mg/kg)或EtOH和Nic的组合。治疗1 h后采集脑标本。采用HPLC-ECD检测DA及其代谢产物3,4-二羟基苯基乙酸(DOPAC)、3-甲氧基酪胺(3- mt)和同型香草酸(HVA), Western blot检测TH蛋白含量和TH丝氨酸31位点磷酸化(pSer31 TH)。与MPTP组相比,EtOH(2.0和3.0 g/kg)单独逆转了MPTP治疗在两个研究脑区域的作用,证明了DA、DOPAC和HVA含量、TH蛋白和pSer31 TH的增加,表明MPTP模型中DA神经元的恢复作用。同样,单独使用Nic(1.0和2.0 mg/kg)可以逆转MPTP的治疗效果,与MPTP小鼠相比,治疗小鼠的DA、DOPAC和HVA含量、TH蛋白和pSer31 TH增加。同时给药EtOH (2.0 g/kg)和Nic (1.0 mg/kg)进一步增加了DA、DOPAC和HVA组织含量、TH蛋白和pSer31 TH,显示出叠加效应。这些结果表明,中高剂量的EtOH和Nic通过激活TH磷酸化诱导MPTP模型小鼠脑DA和TH类似的增加。EtOH和Nic在联合应用中表现出叠加效应,提示它们的联合应用可能是治疗PD的有效治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restoration of MPTP-induced Dopamine and Tyrosine Hydroxylase Depletion in the Mouse Brain Through Ethanol and Nicotine.

Dopamine (DA) has long been considered a major factor in the development of Parkinson's disease (PD). Ethanol (EtOH) and nicotine (Nic), either alone or in combination, have been shown to affect nigrostriatal dopaminergic neuronal activity. Here, we investigate whether EtOH and Nic alone or in co-exposure can restore the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced depletion of dopamine (DA), DA metabolites, and tyrosine hydroxylase (TH) in the striatum and hippocampus of C57BL/6N mice. MPTP-treated mice were treated intraperitoneally with saline (control), EtOH (1.0-3.0 g/kg), Nic (0.5-2.0 mg/kg), or a combination of EtOH and Nic. Brain samples were collected 1 h after treatment. DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were measured by HPLC-ECD, while TH protein content and TH phosphorylation at Ser31 (pSer31 TH) were quantified by Western blot. EtOH (2.0 and 3.0 g/kg) alone reversed the effects of MPTP treatment in both studied brain regions, as evidenced by an increase in DA, DOPAC, and HVA contents, TH protein, and pSer31 TH compared to the MPTP group, indicating restorative effects on DA neurons in the MPTP model. Likewise, Nic (1.0 and 2.0 mg/kg) alone reversed MPTP treatment effects, with treated mice showing increased DA, DOPAC, and HVA contents, TH protein, and pSer31 TH compared to MPTP mice. Co-administration of EtOH (2.0 g/kg) and Nic (1.0 mg/kg) further increased DA, DOPAC and HVA tissue contents, TH protein, and pSer31 TH, indicating an additive effect. These results show that moderate to high doses of EtOH and Nic induce similar increases in brain DA and TH via TH phosphorylation activation in MPTP model mice. EtOH and Nic showed an additive effect in combination, suggesting that their co-application could be a potent therapeutic strategy for treating PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信