神经植入用薄膜电极和有机电化学晶体管的制备。

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Poppy Oldroyd, Santiago Velasco-Bosom, Sophia L Bidinger, Tawfique Hasan, Alexander J Boys, George G Malliaras
{"title":"神经植入用薄膜电极和有机电化学晶体管的制备。","authors":"Poppy Oldroyd, Santiago Velasco-Bosom, Sophia L Bidinger, Tawfique Hasan, Alexander J Boys, George G Malliaras","doi":"10.1038/s41596-024-01116-6","DOIUrl":null,"url":null,"abstract":"<p><p>Bioelectronic medicine, which involves the delivery of electrical stimulation via implantable electrodes, is poised to advance the treatment of neurological conditions. However, current hand-made devices are bulky, invasive and lack specificity. Thin-film neurotechnology devices can overcome these disadvantages. With a typical thickness in the range of micrometers, thin-film devices demonstrate high conformability, stretchability, are minimally invasive and can be fabricated using traditional lithography techniques. Despite their potential, variability and unreliability in fabrication processes hinder their wider utilization. Here, we detail a fabrication method for thin-film poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrodes and organic electrochemical transistors. The use of organic materials makes these devices particularly well suited for bioelectronic medicine applications as they show superior mechanical and electrical matching of biological tissues compared with devices made of inorganic materials. The procedure details the entire process, including mask design, the fabrication through three photolithography stages, the integration with larger-scale electronics, implantation procedures and the expected electrical characterization metrics. The nanofabrication protocol requires at least 3 d and is suitable for those familiar with lithographic fabrication procedures. The surgery requires up to 10 h and is suitable for those familiar with in vivo implantation procedures.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of thin-film electrodes and organic electrochemical transistors for neural implants.\",\"authors\":\"Poppy Oldroyd, Santiago Velasco-Bosom, Sophia L Bidinger, Tawfique Hasan, Alexander J Boys, George G Malliaras\",\"doi\":\"10.1038/s41596-024-01116-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioelectronic medicine, which involves the delivery of electrical stimulation via implantable electrodes, is poised to advance the treatment of neurological conditions. However, current hand-made devices are bulky, invasive and lack specificity. Thin-film neurotechnology devices can overcome these disadvantages. With a typical thickness in the range of micrometers, thin-film devices demonstrate high conformability, stretchability, are minimally invasive and can be fabricated using traditional lithography techniques. Despite their potential, variability and unreliability in fabrication processes hinder their wider utilization. Here, we detail a fabrication method for thin-film poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrodes and organic electrochemical transistors. The use of organic materials makes these devices particularly well suited for bioelectronic medicine applications as they show superior mechanical and electrical matching of biological tissues compared with devices made of inorganic materials. The procedure details the entire process, including mask design, the fabrication through three photolithography stages, the integration with larger-scale electronics, implantation procedures and the expected electrical characterization metrics. The nanofabrication protocol requires at least 3 d and is suitable for those familiar with lithographic fabrication procedures. The surgery requires up to 10 h and is suitable for those familiar with in vivo implantation procedures.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-024-01116-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01116-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

生物电子医学是一种通过植入式电极传递电刺激的技术,有望推进神经系统疾病的治疗。然而,目前手工制作的设备体积庞大,具有侵入性,缺乏特异性。薄膜神经技术设备可以克服这些缺点。薄膜器件的典型厚度在微米范围内,具有高度的一致性,可拉伸性,微创性,并且可以使用传统的光刻技术制造。尽管它们具有潜力,但制造过程中的可变性和不可靠性阻碍了它们的广泛应用。在这里,我们详细介绍了薄膜聚(乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)电极和有机电化学晶体管的制造方法。有机材料的使用使这些设备特别适合生物电子医学应用,因为与无机材料制成的设备相比,它们表现出更好的生物组织机械和电气匹配。该程序详细说明了整个过程,包括掩模设计,通过三个光刻阶段的制造,与更大规模电子器件的集成,植入程序和预期的电气表征指标。纳米加工方案至少需要3d,适合那些熟悉光刻加工程序的人。手术需要长达10小时,适合那些熟悉体内植入程序的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of thin-film electrodes and organic electrochemical transistors for neural implants.

Bioelectronic medicine, which involves the delivery of electrical stimulation via implantable electrodes, is poised to advance the treatment of neurological conditions. However, current hand-made devices are bulky, invasive and lack specificity. Thin-film neurotechnology devices can overcome these disadvantages. With a typical thickness in the range of micrometers, thin-film devices demonstrate high conformability, stretchability, are minimally invasive and can be fabricated using traditional lithography techniques. Despite their potential, variability and unreliability in fabrication processes hinder their wider utilization. Here, we detail a fabrication method for thin-film poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrodes and organic electrochemical transistors. The use of organic materials makes these devices particularly well suited for bioelectronic medicine applications as they show superior mechanical and electrical matching of biological tissues compared with devices made of inorganic materials. The procedure details the entire process, including mask design, the fabrication through three photolithography stages, the integration with larger-scale electronics, implantation procedures and the expected electrical characterization metrics. The nanofabrication protocol requires at least 3 d and is suitable for those familiar with lithographic fabrication procedures. The surgery requires up to 10 h and is suitable for those familiar with in vivo implantation procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信