Prabha Chandrasekaran, Máté Krausz, Yu Han, Noriko Mitsuiki, Annemarie Gabrysch, Christina Nöltner, Michele Proietti, Theo Heller, Caroline Grou, Virginie Calderon, Poorani Subramanian, Drew R Jones, Yik Siu, Clayton Deming, Sean Conlan, Steven M Holland, Julia A Segre, Gulbu Uzel, Bodo Grimbacher, Emilia Liana Falcone
{"title":"肠道微生物组和代谢组识别细胞毒性t淋巴细胞相关蛋白4缺乏症的疾病严重程度。","authors":"Prabha Chandrasekaran, Máté Krausz, Yu Han, Noriko Mitsuiki, Annemarie Gabrysch, Christina Nöltner, Michele Proietti, Theo Heller, Caroline Grou, Virginie Calderon, Poorani Subramanian, Drew R Jones, Yik Siu, Clayton Deming, Sean Conlan, Steven M Holland, Julia A Segre, Gulbu Uzel, Bodo Grimbacher, Emilia Liana Falcone","doi":"10.1186/s40168-025-02028-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cytotoxic T-lymphocyte-associated protein 4 deficiency (CTLA4-D) is an inborn error of immunity (IEI) caused by heterozygous mutations, and characterized by immune cell infiltration into the gut and other organs, leading to intestinal disease, immune dysregulation and autoimmunity. While regulatory T-cell dysfunction remains central to CTLA4-D immunopathogenesis, mechanisms driving disease severity and intestinal pathology are unknown but likely involve intestinal dysbiosis. We determined whether the intestinal microbiome and metabolome could distinguish individuals with severe CTLA4-D and identify biomarkers of disease severity.</p><p><strong>Results: </strong>The genera Veillonella and Streptococcus emerged as biomarkers that distinguished CTLA4-D from healthy cohorts from both the National Institutes of Health (NIH) Clinical Center, USA (NIH; CTLA-D, n = 32; healthy controls, n = 16), and a geographically distinct cohort from the Center for Chronic Immunodeficiency (CCI) of the Medical Center - University of Freiburg, Germany (CCI; CTLA4-D, n = 25; healthy controls, n = 24). Since IEIs in general may be associated with perturbations of the microbiota, a disease control cohort of individuals with common variable immunodeficiency (CVID, n = 20) was included to evaluate for a CTLA4-D-specific microbial signature. Despite common IEI-associated microbiome changes, the two bacterial genera retained their specificity as biomarkers for CTLA4-D. We further identified intestinal microbiome and metabolomic signatures that distinguished patients with CTLA4-D having severe vs. mild disease. Microbiome changes were associated with distinct stool metabolomic profiles and predicted changes in metabolic pathways. These differences were impacted by the presence of gastrointestinal manifestations and were partially reversed by treatment with abatacept and/or sirolimus.</p><p><strong>Conclusions: </strong>Loss of intestinal microbial diversity and dysbiosis causing metabolomic changes was observed in CTLA4-D. Albeit some of these features were shared with CVID, the distinct changes associated with CTLA4-D highlight the fact that IEI-associated microbiome changes likely reflect the underlying immune dysregulation. Identified candidate intestinal microbial and metabolic biomarkers distinguishing individuals with CTLA4-D based on severity should be studied prospectively to determine their predictive value, and investigated as potential therapeutic ta. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"51"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817180/pdf/","citationCount":"0","resultStr":"{\"title\":\"The intestinal microbiome and metabolome discern disease severity in cytotoxic T-lymphocyte-associated protein 4 deficiency.\",\"authors\":\"Prabha Chandrasekaran, Máté Krausz, Yu Han, Noriko Mitsuiki, Annemarie Gabrysch, Christina Nöltner, Michele Proietti, Theo Heller, Caroline Grou, Virginie Calderon, Poorani Subramanian, Drew R Jones, Yik Siu, Clayton Deming, Sean Conlan, Steven M Holland, Julia A Segre, Gulbu Uzel, Bodo Grimbacher, Emilia Liana Falcone\",\"doi\":\"10.1186/s40168-025-02028-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cytotoxic T-lymphocyte-associated protein 4 deficiency (CTLA4-D) is an inborn error of immunity (IEI) caused by heterozygous mutations, and characterized by immune cell infiltration into the gut and other organs, leading to intestinal disease, immune dysregulation and autoimmunity. While regulatory T-cell dysfunction remains central to CTLA4-D immunopathogenesis, mechanisms driving disease severity and intestinal pathology are unknown but likely involve intestinal dysbiosis. We determined whether the intestinal microbiome and metabolome could distinguish individuals with severe CTLA4-D and identify biomarkers of disease severity.</p><p><strong>Results: </strong>The genera Veillonella and Streptococcus emerged as biomarkers that distinguished CTLA4-D from healthy cohorts from both the National Institutes of Health (NIH) Clinical Center, USA (NIH; CTLA-D, n = 32; healthy controls, n = 16), and a geographically distinct cohort from the Center for Chronic Immunodeficiency (CCI) of the Medical Center - University of Freiburg, Germany (CCI; CTLA4-D, n = 25; healthy controls, n = 24). Since IEIs in general may be associated with perturbations of the microbiota, a disease control cohort of individuals with common variable immunodeficiency (CVID, n = 20) was included to evaluate for a CTLA4-D-specific microbial signature. Despite common IEI-associated microbiome changes, the two bacterial genera retained their specificity as biomarkers for CTLA4-D. We further identified intestinal microbiome and metabolomic signatures that distinguished patients with CTLA4-D having severe vs. mild disease. Microbiome changes were associated with distinct stool metabolomic profiles and predicted changes in metabolic pathways. These differences were impacted by the presence of gastrointestinal manifestations and were partially reversed by treatment with abatacept and/or sirolimus.</p><p><strong>Conclusions: </strong>Loss of intestinal microbial diversity and dysbiosis causing metabolomic changes was observed in CTLA4-D. Albeit some of these features were shared with CVID, the distinct changes associated with CTLA4-D highlight the fact that IEI-associated microbiome changes likely reflect the underlying immune dysregulation. Identified candidate intestinal microbial and metabolic biomarkers distinguishing individuals with CTLA4-D based on severity should be studied prospectively to determine their predictive value, and investigated as potential therapeutic ta. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"13 1\",\"pages\":\"51\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817180/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-025-02028-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02028-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:细胞毒性t淋巴细胞相关蛋白4缺乏症(CTLA4-D)是一种由杂合突变引起的先天性免疫错误(IEI),其特征是免疫细胞浸润到肠道和其他器官,导致肠道疾病、免疫失调和自身免疫。虽然调节性t细胞功能障碍仍然是CTLA4-D免疫发病机制的核心,但驱动疾病严重程度和肠道病理的机制尚不清楚,但可能涉及肠道生态失调。我们确定肠道微生物组和代谢组是否可以区分患有严重CTLA4-D的个体,并确定疾病严重程度的生物标志物。结果:美国国立卫生研究院(NIH)临床中心(NIH;CTLA-D, n = 32;健康对照,n = 16),以及来自德国弗莱堡大学医学中心慢性免疫缺陷中心(CCI)的地理位置不同的队列(CCI;CTLA4-D, n = 25;健康对照,n = 24)。由于iei通常可能与微生物群的扰动有关,因此纳入了一个由患有常见可变免疫缺陷(CVID, n = 20)的个体组成的疾病控制队列,以评估ctla4 - d特异性微生物特征。尽管常见的iei相关微生物组发生变化,但这两种细菌属保留了它们作为CTLA4-D生物标志物的特异性。我们进一步鉴定了肠道微生物组和代谢组学特征,以区分重度和轻度CTLA4-D患者。微生物组的变化与不同的粪便代谢组谱相关,并预测代谢途径的变化。这些差异受到胃肠道表现的影响,并通过阿巴接受和/或西罗莫司治疗部分逆转。结论:CTLA4-D观察到肠道微生物多样性丧失和生态失调导致代谢组学变化。尽管其中一些特征与CVID相同,但与CTLA4-D相关的明显变化强调了iei相关的微生物组变化可能反映了潜在的免疫失调。根据严重程度区分CTLA4-D个体的候选肠道微生物和代谢生物标志物应进行前瞻性研究,以确定其预测价值,并研究其作为潜在的治疗方法。视频摘要。
The intestinal microbiome and metabolome discern disease severity in cytotoxic T-lymphocyte-associated protein 4 deficiency.
Background: Cytotoxic T-lymphocyte-associated protein 4 deficiency (CTLA4-D) is an inborn error of immunity (IEI) caused by heterozygous mutations, and characterized by immune cell infiltration into the gut and other organs, leading to intestinal disease, immune dysregulation and autoimmunity. While regulatory T-cell dysfunction remains central to CTLA4-D immunopathogenesis, mechanisms driving disease severity and intestinal pathology are unknown but likely involve intestinal dysbiosis. We determined whether the intestinal microbiome and metabolome could distinguish individuals with severe CTLA4-D and identify biomarkers of disease severity.
Results: The genera Veillonella and Streptococcus emerged as biomarkers that distinguished CTLA4-D from healthy cohorts from both the National Institutes of Health (NIH) Clinical Center, USA (NIH; CTLA-D, n = 32; healthy controls, n = 16), and a geographically distinct cohort from the Center for Chronic Immunodeficiency (CCI) of the Medical Center - University of Freiburg, Germany (CCI; CTLA4-D, n = 25; healthy controls, n = 24). Since IEIs in general may be associated with perturbations of the microbiota, a disease control cohort of individuals with common variable immunodeficiency (CVID, n = 20) was included to evaluate for a CTLA4-D-specific microbial signature. Despite common IEI-associated microbiome changes, the two bacterial genera retained their specificity as biomarkers for CTLA4-D. We further identified intestinal microbiome and metabolomic signatures that distinguished patients with CTLA4-D having severe vs. mild disease. Microbiome changes were associated with distinct stool metabolomic profiles and predicted changes in metabolic pathways. These differences were impacted by the presence of gastrointestinal manifestations and were partially reversed by treatment with abatacept and/or sirolimus.
Conclusions: Loss of intestinal microbial diversity and dysbiosis causing metabolomic changes was observed in CTLA4-D. Albeit some of these features were shared with CVID, the distinct changes associated with CTLA4-D highlight the fact that IEI-associated microbiome changes likely reflect the underlying immune dysregulation. Identified candidate intestinal microbial and metabolic biomarkers distinguishing individuals with CTLA4-D based on severity should be studied prospectively to determine their predictive value, and investigated as potential therapeutic ta. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.