规范和非规范PRC1对神经干细胞命运的调节有差异。

IF 3.3 2区 生物学 Q1 BIOLOGY
Life Science Alliance Pub Date : 2025-02-11 Print Date: 2025-04-01 DOI:10.26508/lsa.202403006
Janine Hoffmann, Theresa M Schütze, Annika Kolodziejczyk, Karolin Küster, Annekathrin Kränkel, Susanne Reinhardt, Razvan P Derihaci, Cahit Birdir, Pauline Wimberger, Haruhiko Koseki, Mareike Albert
{"title":"规范和非规范PRC1对神经干细胞命运的调节有差异。","authors":"Janine Hoffmann, Theresa M Schütze, Annika Kolodziejczyk, Karolin Küster, Annekathrin Kränkel, Susanne Reinhardt, Razvan P Derihaci, Cahit Birdir, Pauline Wimberger, Haruhiko Koseki, Mareike Albert","doi":"10.26508/lsa.202403006","DOIUrl":null,"url":null,"abstract":"<p><p>Neocortex development is characterized by sequential phases of neural progenitor cell (NPC) expansion, neurogenesis, and gliogenesis. Polycomb-mediated epigenetic mechanisms are known to play important roles in regulating the lineage potential of NPCs during development. The composition of Polycomb repressive complex 1 (PRC1) is highly diverse in mammals and was hypothesized to contribute to context-specific regulation of cell fate. Here, we have performed a side-by-side comparison of the role of canonical PRC1.2/1.4 and non-canonical PRC1.3/1.5, all of which are expressed in the developing neocortex, in NSC proliferation and differentiation. We found that the deletion of <i>Pcgf2/4</i> in NSCs led to a strong reduction in proliferation and to altered lineage fate, both during the neurogenic and gliogenic phase, whereas <i>Pcgf3/5</i> played a minor role. Mechanistically, genes encoding stem cell and neurogenic factors were bound by PRC1 and differentially expressed upon <i>Pcgf2/4</i> deletion. Thus, rather than different PRC1 subcomplexes contributing to different phases of neural development, we found that canonical PRC1 played a more significant role in NSC regulation during proliferative, neurogenic, and gliogenic phases compared with non-canonical PRC1.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814486/pdf/","citationCount":"0","resultStr":"{\"title\":\"Canonical and non-canonical PRC1 differentially contribute to regulation of neural stem cell fate.\",\"authors\":\"Janine Hoffmann, Theresa M Schütze, Annika Kolodziejczyk, Karolin Küster, Annekathrin Kränkel, Susanne Reinhardt, Razvan P Derihaci, Cahit Birdir, Pauline Wimberger, Haruhiko Koseki, Mareike Albert\",\"doi\":\"10.26508/lsa.202403006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neocortex development is characterized by sequential phases of neural progenitor cell (NPC) expansion, neurogenesis, and gliogenesis. Polycomb-mediated epigenetic mechanisms are known to play important roles in regulating the lineage potential of NPCs during development. The composition of Polycomb repressive complex 1 (PRC1) is highly diverse in mammals and was hypothesized to contribute to context-specific regulation of cell fate. Here, we have performed a side-by-side comparison of the role of canonical PRC1.2/1.4 and non-canonical PRC1.3/1.5, all of which are expressed in the developing neocortex, in NSC proliferation and differentiation. We found that the deletion of <i>Pcgf2/4</i> in NSCs led to a strong reduction in proliferation and to altered lineage fate, both during the neurogenic and gliogenic phase, whereas <i>Pcgf3/5</i> played a minor role. Mechanistically, genes encoding stem cell and neurogenic factors were bound by PRC1 and differentially expressed upon <i>Pcgf2/4</i> deletion. Thus, rather than different PRC1 subcomplexes contributing to different phases of neural development, we found that canonical PRC1 played a more significant role in NSC regulation during proliferative, neurogenic, and gliogenic phases compared with non-canonical PRC1.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814486/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202403006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202403006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新皮层发育的特点是神经祖细胞(NPC)扩增、神经发生和胶质发生的顺序阶段。已知polycomb介导的表观遗传机制在发育过程中调节npc的谱系潜能中发挥重要作用。Polycomb抑制复合体1 (PRC1)的组成在哺乳动物中是高度多样化的,并且被假设有助于特定环境对细胞命运的调节。在这里,我们并排比较了典型PRC1.2/1.4和非典型PRC1.3/1.5在NSC增殖和分化中的作用,它们都在发育中的新皮层中表达。我们发现,在神经源性和胶质源性阶段,NSCs中Pcgf2/4的缺失导致增殖的强烈减少和谱系命运的改变,而Pcgf3/5只起次要作用。在机制上,编码干细胞和神经源性因子的基因与PRC1结合,并在Pcgf2/4缺失时差异表达。因此,我们发现,与非典型PRC1相比,典型PRC1在增殖期、神经原性期和胶质原性期的NSC调节中发挥了更重要的作用,而不是不同的PRC1亚复合物对神经发育的不同阶段起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical and non-canonical PRC1 differentially contribute to regulation of neural stem cell fate.

Neocortex development is characterized by sequential phases of neural progenitor cell (NPC) expansion, neurogenesis, and gliogenesis. Polycomb-mediated epigenetic mechanisms are known to play important roles in regulating the lineage potential of NPCs during development. The composition of Polycomb repressive complex 1 (PRC1) is highly diverse in mammals and was hypothesized to contribute to context-specific regulation of cell fate. Here, we have performed a side-by-side comparison of the role of canonical PRC1.2/1.4 and non-canonical PRC1.3/1.5, all of which are expressed in the developing neocortex, in NSC proliferation and differentiation. We found that the deletion of Pcgf2/4 in NSCs led to a strong reduction in proliferation and to altered lineage fate, both during the neurogenic and gliogenic phase, whereas Pcgf3/5 played a minor role. Mechanistically, genes encoding stem cell and neurogenic factors were bound by PRC1 and differentially expressed upon Pcgf2/4 deletion. Thus, rather than different PRC1 subcomplexes contributing to different phases of neural development, we found that canonical PRC1 played a more significant role in NSC regulation during proliferative, neurogenic, and gliogenic phases compared with non-canonical PRC1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信