Decastatin是一种来自X型胶原蛋白的新型非胶原1结构域,含有具有抗血管生成特性的特定片段。

IF 2.6 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Stine Marie Jansen, Rastislav Pitek, Morten Asser Karsdal, Kim Henriksen
{"title":"Decastatin是一种来自X型胶原蛋白的新型非胶原1结构域,含有具有抗血管生成特性的特定片段。","authors":"Stine Marie Jansen, Rastislav Pitek, Morten Asser Karsdal, Kim Henriksen","doi":"10.1097/FJC.0000000000001683","DOIUrl":null,"url":null,"abstract":"<p><p>The NC1 domains of collagens have been shown to possess antiangiogenic potential and, therefore, are of therapeutic interest for cancer. However, endostatin and other NC1 domains have not been successful in clinical tests. Therefore, we used evolutionary conservation to perform molecular deconstruction of the domains to further understand their structure-activity relationship, thereby deciphering their antiangiogenic potential. Homology exploration revealed that collagen type X contains a highly interesting NC1 domain (decastatin), with several sequences showing significant homology with vastatin, which is a known collagen type VIII-derived NC1 domain. For comparison, endostatin and vastatin were split into fragments, some of which contained highly conserved regions. The testing of these peptides revealed that the peptides containing conserved regions induced signaling, and fragment four of decastatin showed the highest potency of all fragments, with a calculated IC 50 value of 2.7 μM in the human umbilical vein endothelial cell (HUVEC)-based tube formation assay, which is like that of an intact NC1 domain. Notably, the corresponding fragment from vastatin (V4) also inhibited tube formation, suggesting that this region is of therapeutic interest. In summary, we used evolutionary conservation to identify a novel NC1 domain of collagen type X, a collagen playing a role in angiogenesis of the growth plate. Furthermore, we provided data indicating that the antiangiogenic activity of NC1 domain-derived peptides reside within their conserved domains. As a result, we identified a fragment called Decastatin fragment 4 (D4) derived from the NC1 domain of collagen type X, and which has potent antiangiogenic activity.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decastatin, a novel Non-Collagenous 1 domain from collagen type X, harbors a specific fragment with antiangiogenic properties.\",\"authors\":\"Stine Marie Jansen, Rastislav Pitek, Morten Asser Karsdal, Kim Henriksen\",\"doi\":\"10.1097/FJC.0000000000001683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The NC1 domains of collagens have been shown to possess antiangiogenic potential and, therefore, are of therapeutic interest for cancer. However, endostatin and other NC1 domains have not been successful in clinical tests. Therefore, we used evolutionary conservation to perform molecular deconstruction of the domains to further understand their structure-activity relationship, thereby deciphering their antiangiogenic potential. Homology exploration revealed that collagen type X contains a highly interesting NC1 domain (decastatin), with several sequences showing significant homology with vastatin, which is a known collagen type VIII-derived NC1 domain. For comparison, endostatin and vastatin were split into fragments, some of which contained highly conserved regions. The testing of these peptides revealed that the peptides containing conserved regions induced signaling, and fragment four of decastatin showed the highest potency of all fragments, with a calculated IC 50 value of 2.7 μM in the human umbilical vein endothelial cell (HUVEC)-based tube formation assay, which is like that of an intact NC1 domain. Notably, the corresponding fragment from vastatin (V4) also inhibited tube formation, suggesting that this region is of therapeutic interest. In summary, we used evolutionary conservation to identify a novel NC1 domain of collagen type X, a collagen playing a role in angiogenesis of the growth plate. Furthermore, we provided data indicating that the antiangiogenic activity of NC1 domain-derived peptides reside within their conserved domains. As a result, we identified a fragment called Decastatin fragment 4 (D4) derived from the NC1 domain of collagen type X, and which has potent antiangiogenic activity.</p>\",\"PeriodicalId\":15212,\"journal\":{\"name\":\"Journal of Cardiovascular Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FJC.0000000000001683\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001683","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

胶原的NC1结构域已被证明具有抗血管生成的潜力,因此对癌症的治疗有兴趣。然而,内皮抑素和其他NC1结构域在临床试验中尚未成功。因此,我们使用进化守恒对结构域进行分子解构,以进一步了解它们的结构-活性关系,从而破译它们的抗血管生成潜力。同源性研究发现,X型胶原含有一个非常有趣的NC1结构域(decastatin),其中几个序列与已知的viii型胶原衍生的NC1结构域伐他汀具有显著的同源性。相比之下,内皮抑素和伐他汀被分割成碎片,其中一些包含高度保守的区域。结果表明,含有保守区域的肽段可诱导信号传导,其中decastatin片段4的效价最高,在人脐静脉内皮细胞(HUVEC)成管实验中IC50值为2.7 μM,与完整的NC1结构域相似。值得注意的是,来自伐他汀(V4)的相应片段也抑制了管的形成,这表明该区域具有治疗意义。总之,我们利用进化保守方法鉴定了X型胶原蛋白的一个新的NC1结构域,这种胶原蛋白在生长板的血管生成中起作用。此外,我们提供的数据表明,NC1结构域衍生肽的抗血管生成活性存在于它们的保守结构域内。结果,我们发现了一个叫做Decastatin片段4 (D4)的片段,它来源于X型胶原的NC1结构域,具有强大的抗血管生成活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decastatin, a novel Non-Collagenous 1 domain from collagen type X, harbors a specific fragment with antiangiogenic properties.

The NC1 domains of collagens have been shown to possess antiangiogenic potential and, therefore, are of therapeutic interest for cancer. However, endostatin and other NC1 domains have not been successful in clinical tests. Therefore, we used evolutionary conservation to perform molecular deconstruction of the domains to further understand their structure-activity relationship, thereby deciphering their antiangiogenic potential. Homology exploration revealed that collagen type X contains a highly interesting NC1 domain (decastatin), with several sequences showing significant homology with vastatin, which is a known collagen type VIII-derived NC1 domain. For comparison, endostatin and vastatin were split into fragments, some of which contained highly conserved regions. The testing of these peptides revealed that the peptides containing conserved regions induced signaling, and fragment four of decastatin showed the highest potency of all fragments, with a calculated IC 50 value of 2.7 μM in the human umbilical vein endothelial cell (HUVEC)-based tube formation assay, which is like that of an intact NC1 domain. Notably, the corresponding fragment from vastatin (V4) also inhibited tube formation, suggesting that this region is of therapeutic interest. In summary, we used evolutionary conservation to identify a novel NC1 domain of collagen type X, a collagen playing a role in angiogenesis of the growth plate. Furthermore, we provided data indicating that the antiangiogenic activity of NC1 domain-derived peptides reside within their conserved domains. As a result, we identified a fragment called Decastatin fragment 4 (D4) derived from the NC1 domain of collagen type X, and which has potent antiangiogenic activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
367
审稿时长
1 months
期刊介绍: Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias. Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信