两种分子佐剂鞭毛蛋白和IFN-γ对尼罗罗非鱼(Oreochromis niloticus)抗无乳链球菌免疫应答的效果分析

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sreeja Lakshmi, Nandhakumar, Ritam Guha, Alex Wang, Eakapol Wangkahart, Tiehui Wang, Preetham Elumalai
{"title":"两种分子佐剂鞭毛蛋白和IFN-γ对尼罗罗非鱼(Oreochromis niloticus)抗无乳链球菌免疫应答的效果分析","authors":"Sreeja Lakshmi, Nandhakumar, Ritam Guha, Alex Wang, Eakapol Wangkahart, Tiehui Wang, Preetham Elumalai","doi":"10.1007/s10695-025-01464-4","DOIUrl":null,"url":null,"abstract":"<p><p>Aquaculture industry frequently encounters disease outbreaks, high mortalities, as well as emergence of new pathogens due to its intensification. Streptococcus agalactiae (Lancefield's group B Streptococcus) is an important pathogen extensively causing infectious disease in tilapia resulting in huge economic loss and mortality. To date, vaccination has proved to be successful in defending against infectious diseases prevailing among farmed fish species. This study aimed to develop an S. agalactiae inactivated vaccine (SAIV) using molecular adjuvants, flagellin and tilapia interferon gamma (IFN-γ), and to assess the generated immune response and protective efficacy of the adjuvant incorporated vaccine against S. agalactiae infection in Nile tilapia. The fish were vaccinated with SAIV together with either flagellin or IFN-γ and both together by intraperitoneal injection. The vaccinated fish were challenged with a virulent strain of S. agalactiae on day 36 and monitored for 3 weeks to assess cumulative mortality. The results showed that the vaccine offered significant protection with relative percentage survival (RPS) of 59.37%, 71.87%, and 81.25% observed for bacterin vaccine adjuvanted with flagellin, IFN-γ and both, respectively, with an RPS of 15.62% for the unadjuvanted bacterin control group after challenge with S. agalactiae. The vaccine induced specific IgM antibodies against S. agalactiae in the vaccinated groups, and the antibody response was significantly increased following booster vaccination in the fishes administered with vaccine adjuvanted with flagellin, IFN-γ and both. Furthermore, after vaccination, MHC-II and IgM gene expression was found significantly upregulated in head kidney and spleen, in line with an elevated specific IgM titer. Innate immune parameters including catalase, lysozyme, superoxide dismutase, myeloperoxidase, and bactericidal activities were significantly increased in fishes immunized when compared with the unvaccinated controls (P < 0.05). Histopathological examinations of tissue sections of the head kidney, spleen, liver, kidney, gills, and brain were performed on vaccinated and non-vaccinated fish which showed mild infiltrations. In conclusion, flagellin and IFN-γ have shown potential for use as molecular adjuvants to enhance the efficacy of fish vaccines against S. agalactiae infections.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"47"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the efficacy of two molecular adjuvants, flagellin and IFN-γ, on the immune response against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus).\",\"authors\":\"Sreeja Lakshmi, Nandhakumar, Ritam Guha, Alex Wang, Eakapol Wangkahart, Tiehui Wang, Preetham Elumalai\",\"doi\":\"10.1007/s10695-025-01464-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aquaculture industry frequently encounters disease outbreaks, high mortalities, as well as emergence of new pathogens due to its intensification. Streptococcus agalactiae (Lancefield's group B Streptococcus) is an important pathogen extensively causing infectious disease in tilapia resulting in huge economic loss and mortality. To date, vaccination has proved to be successful in defending against infectious diseases prevailing among farmed fish species. This study aimed to develop an S. agalactiae inactivated vaccine (SAIV) using molecular adjuvants, flagellin and tilapia interferon gamma (IFN-γ), and to assess the generated immune response and protective efficacy of the adjuvant incorporated vaccine against S. agalactiae infection in Nile tilapia. The fish were vaccinated with SAIV together with either flagellin or IFN-γ and both together by intraperitoneal injection. The vaccinated fish were challenged with a virulent strain of S. agalactiae on day 36 and monitored for 3 weeks to assess cumulative mortality. The results showed that the vaccine offered significant protection with relative percentage survival (RPS) of 59.37%, 71.87%, and 81.25% observed for bacterin vaccine adjuvanted with flagellin, IFN-γ and both, respectively, with an RPS of 15.62% for the unadjuvanted bacterin control group after challenge with S. agalactiae. The vaccine induced specific IgM antibodies against S. agalactiae in the vaccinated groups, and the antibody response was significantly increased following booster vaccination in the fishes administered with vaccine adjuvanted with flagellin, IFN-γ and both. Furthermore, after vaccination, MHC-II and IgM gene expression was found significantly upregulated in head kidney and spleen, in line with an elevated specific IgM titer. Innate immune parameters including catalase, lysozyme, superoxide dismutase, myeloperoxidase, and bactericidal activities were significantly increased in fishes immunized when compared with the unvaccinated controls (P < 0.05). Histopathological examinations of tissue sections of the head kidney, spleen, liver, kidney, gills, and brain were performed on vaccinated and non-vaccinated fish which showed mild infiltrations. In conclusion, flagellin and IFN-γ have shown potential for use as molecular adjuvants to enhance the efficacy of fish vaccines against S. agalactiae infections.</p>\",\"PeriodicalId\":12274,\"journal\":{\"name\":\"Fish Physiology and Biochemistry\",\"volume\":\"51 1\",\"pages\":\"47\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish Physiology and Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10695-025-01464-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-025-01464-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于养殖业的集约化,养殖业经常遭遇疾病暴发、高死亡率以及新病原体的出现。无乳链球菌(兰斯菲尔德氏B群链球菌)是广泛引起罗非鱼传染病的重要病原体,造成巨大的经济损失和死亡。迄今为止,接种疫苗已被证明能够成功地预防在养殖鱼类中流行的传染病。本研究旨在以分子佐剂、鞭毛蛋白和罗非鱼干扰素γ (IFN-γ)为佐剂,研制一种无乳链球菌灭活疫苗(SAIV),并评价佐剂联合疫苗对尼罗罗非鱼无乳链球菌感染产生的免疫应答和保护效果。将SAIV与鞭毛蛋白或IFN-γ一起腹腔注射。接种疫苗的鱼在第36天用无乳链球菌毒力毒株攻毒,并监测3周以评估累积死亡率。结果表明,无乳链球菌攻毒后,鞭毛蛋白、IFN-γ和两者佐剂疫苗的相对存活率(RPS)分别为59.37%、71.87%和81.25%,未佐剂疫苗对照组的相对存活率为15.62%。疫苗在接种组诱导了针对无乳链球菌的特异性IgM抗体,并且在鞭毛蛋白、IFN-γ和两者佐剂的疫苗强化接种后,抗体应答显著增加。此外,接种疫苗后,头颅肾和脾脏的MHC-II和IgM基因表达显著上调,与特异性IgM滴度升高一致。免疫鱼的先天免疫参数包括过氧化氢酶、溶菌酶、超氧化物歧化酶、髓过氧化物酶和杀菌活性显著高于未接种的对照组(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the efficacy of two molecular adjuvants, flagellin and IFN-γ, on the immune response against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus).

Aquaculture industry frequently encounters disease outbreaks, high mortalities, as well as emergence of new pathogens due to its intensification. Streptococcus agalactiae (Lancefield's group B Streptococcus) is an important pathogen extensively causing infectious disease in tilapia resulting in huge economic loss and mortality. To date, vaccination has proved to be successful in defending against infectious diseases prevailing among farmed fish species. This study aimed to develop an S. agalactiae inactivated vaccine (SAIV) using molecular adjuvants, flagellin and tilapia interferon gamma (IFN-γ), and to assess the generated immune response and protective efficacy of the adjuvant incorporated vaccine against S. agalactiae infection in Nile tilapia. The fish were vaccinated with SAIV together with either flagellin or IFN-γ and both together by intraperitoneal injection. The vaccinated fish were challenged with a virulent strain of S. agalactiae on day 36 and monitored for 3 weeks to assess cumulative mortality. The results showed that the vaccine offered significant protection with relative percentage survival (RPS) of 59.37%, 71.87%, and 81.25% observed for bacterin vaccine adjuvanted with flagellin, IFN-γ and both, respectively, with an RPS of 15.62% for the unadjuvanted bacterin control group after challenge with S. agalactiae. The vaccine induced specific IgM antibodies against S. agalactiae in the vaccinated groups, and the antibody response was significantly increased following booster vaccination in the fishes administered with vaccine adjuvanted with flagellin, IFN-γ and both. Furthermore, after vaccination, MHC-II and IgM gene expression was found significantly upregulated in head kidney and spleen, in line with an elevated specific IgM titer. Innate immune parameters including catalase, lysozyme, superoxide dismutase, myeloperoxidase, and bactericidal activities were significantly increased in fishes immunized when compared with the unvaccinated controls (P < 0.05). Histopathological examinations of tissue sections of the head kidney, spleen, liver, kidney, gills, and brain were performed on vaccinated and non-vaccinated fish which showed mild infiltrations. In conclusion, flagellin and IFN-γ have shown potential for use as molecular adjuvants to enhance the efficacy of fish vaccines against S. agalactiae infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信