Marchantia polymorpha subsp. ruderalis 的种群基因组学揭示了适应气候的证据。

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shuangyang Wu, Katharina Jandrasits, Kelly Swarts, Johannes Roetzer, Svetlana Akimcheva, Masaki Shimamura, Tetsuya Hisanaga, Frédéric Berger, Liam Dolan
{"title":"Marchantia polymorpha subsp. ruderalis 的种群基因组学揭示了适应气候的证据。","authors":"Shuangyang Wu, Katharina Jandrasits, Kelly Swarts, Johannes Roetzer, Svetlana Akimcheva, Masaki Shimamura, Tetsuya Hisanaga, Frédéric Berger, Liam Dolan","doi":"10.1016/j.cub.2025.01.008","DOIUrl":null,"url":null,"abstract":"<p><p>Sexual reproduction results in the development of haploid and diploid cell states during the life cycle. In bryophytes, the dominant multicellular haploid phase produces motile sperm that swim through water to the egg to effect fertilization from which a relatively small diploid phase develops. In angiosperms, the reduced multicellular haploid phase produces non-motile sperm that is delivered to the egg through a pollen tube to effect fertilization from which the dominant diploid phase develops. These different life cycle characteristics are likely to impact the distribution of genetic variation among populations. However, little is known about the distribution of genetic variation among wild populations of bryophytes. To investigate how genetic variation is distributed among populations of a bryophyte and to establish the foundation for population genetics research in bryophytes, we described the genetic diversity of collections of Marchantia polymorpha subsp. ruderalis, a cosmopolitan ruderal liverwort. We identified 78 genetically unique (non-clonal) from a total of 209 sequenced accessions collected from 37 sites in Europe and Japan. There was no detectable population structure among European populations but significant genetic differentiation between Japanese and European populations. By associating genetic variation across the genome with global climate data, we showed that temperature and precipitation influence the frequency of potentially adaptive alleles. This collection establishes the core of an experimental platform that exploits natural genetic variation to answer diverse questions in biology.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population genomics of Marchantia polymorpha subsp. ruderalis reveals evidence of climate adaptation.\",\"authors\":\"Shuangyang Wu, Katharina Jandrasits, Kelly Swarts, Johannes Roetzer, Svetlana Akimcheva, Masaki Shimamura, Tetsuya Hisanaga, Frédéric Berger, Liam Dolan\",\"doi\":\"10.1016/j.cub.2025.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sexual reproduction results in the development of haploid and diploid cell states during the life cycle. In bryophytes, the dominant multicellular haploid phase produces motile sperm that swim through water to the egg to effect fertilization from which a relatively small diploid phase develops. In angiosperms, the reduced multicellular haploid phase produces non-motile sperm that is delivered to the egg through a pollen tube to effect fertilization from which the dominant diploid phase develops. These different life cycle characteristics are likely to impact the distribution of genetic variation among populations. However, little is known about the distribution of genetic variation among wild populations of bryophytes. To investigate how genetic variation is distributed among populations of a bryophyte and to establish the foundation for population genetics research in bryophytes, we described the genetic diversity of collections of Marchantia polymorpha subsp. ruderalis, a cosmopolitan ruderal liverwort. We identified 78 genetically unique (non-clonal) from a total of 209 sequenced accessions collected from 37 sites in Europe and Japan. There was no detectable population structure among European populations but significant genetic differentiation between Japanese and European populations. By associating genetic variation across the genome with global climate data, we showed that temperature and precipitation influence the frequency of potentially adaptive alleles. This collection establishes the core of an experimental platform that exploits natural genetic variation to answer diverse questions in biology.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2025.01.008\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.01.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population genomics of Marchantia polymorpha subsp. ruderalis reveals evidence of climate adaptation.

Sexual reproduction results in the development of haploid and diploid cell states during the life cycle. In bryophytes, the dominant multicellular haploid phase produces motile sperm that swim through water to the egg to effect fertilization from which a relatively small diploid phase develops. In angiosperms, the reduced multicellular haploid phase produces non-motile sperm that is delivered to the egg through a pollen tube to effect fertilization from which the dominant diploid phase develops. These different life cycle characteristics are likely to impact the distribution of genetic variation among populations. However, little is known about the distribution of genetic variation among wild populations of bryophytes. To investigate how genetic variation is distributed among populations of a bryophyte and to establish the foundation for population genetics research in bryophytes, we described the genetic diversity of collections of Marchantia polymorpha subsp. ruderalis, a cosmopolitan ruderal liverwort. We identified 78 genetically unique (non-clonal) from a total of 209 sequenced accessions collected from 37 sites in Europe and Japan. There was no detectable population structure among European populations but significant genetic differentiation between Japanese and European populations. By associating genetic variation across the genome with global climate data, we showed that temperature and precipitation influence the frequency of potentially adaptive alleles. This collection establishes the core of an experimental platform that exploits natural genetic variation to answer diverse questions in biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信