遵守医学成像中人工智能清单(CLAIM):一项综合两级分析的总括性审查。

IF 1.4 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Burak Koçak, Fadime Köse, Ali Keleş, Abdurrezzak Şendur, İsmail Meşe, Mehmet Karagülle
{"title":"遵守医学成像中人工智能清单(CLAIM):一项综合两级分析的总括性审查。","authors":"Burak Koçak, Fadime Köse, Ali Keleş, Abdurrezzak Şendur, İsmail Meşe, Mehmet Karagülle","doi":"10.4274/dir.2025.243182","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To comprehensively assess Checklist for Artificial Intelligence in Medical Imaging (CLAIM) adherence in medical imaging artificial intelligence (AI) literature by aggregating data from previous systematic and non-systematic reviews.</p><p><strong>Methods: </strong>A systematic search of PubMed, Scopus, and Google Scholar identified reviews using the CLAIM to evaluate medical imaging AI studies. Reviews were analyzed at two levels: review level (33 reviews; 1,458 studies) and study level (421 unique studies from 15 reviews). The CLAIM adherence metrics (scores and compliance rates), baseline characteristics, factors influencing adherence, and critiques of the CLAIM were analyzed.</p><p><strong>Results: </strong>A review-level analysis of 26 reviews (874 studies) found a weighted mean CLAIM score of 25 [standard deviation (SD): 4] and a median of 26 [interquartile range (IQR): 8; 25<sup>th</sup>-75<sup>th</sup> percentiles: 20-28]. In a separate review-level analysis involving 18 reviews (993 studies), the weighted mean CLAIM compliance was 63% (SD: 11%), with a median of 66% (IQR: 4%; 25<sup>th</sup>-75<sup>th</sup> percentiles: 63%-67%). A study-level analysis of 421 unique studies published between 1997 and 2024 found a median CLAIM score of 26 (IQR: 6; 25<sup>th</sup>-75<sup>th</sup> percentiles: 23-29) and a median compliance of 68% (IQR: 16%; 25<sup>th</sup>-75<sup>th</sup> percentiles: 59%-75%). Adherence was independently associated with the journal impact factor quartile, publication year, and specific radiology subfields. After guideline publication, CLAIM compliance improved (<i>P</i> = 0.004). Multiple readers provided an evaluation in 85% (28/33) of reviews, but only 11% (3/28) included a reliability analysis. An item-wise evaluation identified 11 underreported items (missing in ≥50% of studies). Among the 10 identified critiques, the most common were item inapplicability to diverse study types and subjective interpretations of fulfillment.</p><p><strong>Conclusion: </strong>Our two-level analysis revealed considerable reporting gaps, underreported items, factors related to adherence, and common CLAIM critiques, providing actionable insights for researchers and journals to improve transparency, reproducibility, and reporting quality in AI studies.</p><p><strong>Clinical significance: </strong>By combining data from systematic and non-systematic reviews on CLAIM adherence, our comprehensive findings may serve as targets to help researchers and journals improve transparency, reproducibility, and reporting quality in AI studies.</p>","PeriodicalId":11341,"journal":{"name":"Diagnostic and interventional radiology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adherence to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM): an umbrella review with a comprehensive two-level analysis.\",\"authors\":\"Burak Koçak, Fadime Köse, Ali Keleş, Abdurrezzak Şendur, İsmail Meşe, Mehmet Karagülle\",\"doi\":\"10.4274/dir.2025.243182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To comprehensively assess Checklist for Artificial Intelligence in Medical Imaging (CLAIM) adherence in medical imaging artificial intelligence (AI) literature by aggregating data from previous systematic and non-systematic reviews.</p><p><strong>Methods: </strong>A systematic search of PubMed, Scopus, and Google Scholar identified reviews using the CLAIM to evaluate medical imaging AI studies. Reviews were analyzed at two levels: review level (33 reviews; 1,458 studies) and study level (421 unique studies from 15 reviews). The CLAIM adherence metrics (scores and compliance rates), baseline characteristics, factors influencing adherence, and critiques of the CLAIM were analyzed.</p><p><strong>Results: </strong>A review-level analysis of 26 reviews (874 studies) found a weighted mean CLAIM score of 25 [standard deviation (SD): 4] and a median of 26 [interquartile range (IQR): 8; 25<sup>th</sup>-75<sup>th</sup> percentiles: 20-28]. In a separate review-level analysis involving 18 reviews (993 studies), the weighted mean CLAIM compliance was 63% (SD: 11%), with a median of 66% (IQR: 4%; 25<sup>th</sup>-75<sup>th</sup> percentiles: 63%-67%). A study-level analysis of 421 unique studies published between 1997 and 2024 found a median CLAIM score of 26 (IQR: 6; 25<sup>th</sup>-75<sup>th</sup> percentiles: 23-29) and a median compliance of 68% (IQR: 16%; 25<sup>th</sup>-75<sup>th</sup> percentiles: 59%-75%). Adherence was independently associated with the journal impact factor quartile, publication year, and specific radiology subfields. After guideline publication, CLAIM compliance improved (<i>P</i> = 0.004). Multiple readers provided an evaluation in 85% (28/33) of reviews, but only 11% (3/28) included a reliability analysis. An item-wise evaluation identified 11 underreported items (missing in ≥50% of studies). Among the 10 identified critiques, the most common were item inapplicability to diverse study types and subjective interpretations of fulfillment.</p><p><strong>Conclusion: </strong>Our two-level analysis revealed considerable reporting gaps, underreported items, factors related to adherence, and common CLAIM critiques, providing actionable insights for researchers and journals to improve transparency, reproducibility, and reporting quality in AI studies.</p><p><strong>Clinical significance: </strong>By combining data from systematic and non-systematic reviews on CLAIM adherence, our comprehensive findings may serve as targets to help researchers and journals improve transparency, reproducibility, and reporting quality in AI studies.</p>\",\"PeriodicalId\":11341,\"journal\":{\"name\":\"Diagnostic and interventional radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and interventional radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4274/dir.2025.243182\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and interventional radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/dir.2025.243182","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:通过汇总以往系统和非系统评价的数据,综合评估医学成像人工智能(AI)文献中《医学成像人工智能清单》(CLAIM)的依从性。方法:系统搜索PubMed、Scopus和b谷歌Scholar,确定使用CLAIM评估医学成像人工智能研究的评论。从两个层面对评价进行分析:评价水平(33篇评价);1458项研究)和研究水平(来自15项综述的421项独特研究)。对CLAIM依从性指标(得分和依从率)、基线特征、影响依从性的因素和对CLAIM的批评进行了分析。结果:26篇综述(874项研究)的评价水平分析发现,CLAIM评分的加权平均值为25[标准差(SD): 4],中位数为26[四分位间距(IQR): 8;25 -75百分位数:20-28]。在一项涉及18篇综述(993项研究)的单独评价水平分析中,CLAIM依从性的加权平均值为63% (SD: 11%),中位数为66% (IQR: 4%;25 -75个百分位数:63%-67%)。对1997年至2024年间发表的421项独特研究的研究水平分析发现,索赔分数的中位数为26 (IQR: 6;25 -75百分位:23-29),中位依从性为68% (IQR: 16%;25 -75个百分位数:59%-75%)。依从性与期刊影响因子四分位数、出版年份和特定放射学子领域独立相关。指南发布后,CLAIM依从性得到改善(P = 0.004)。85%(28/33)的评论中有多个读者提供了评价,但只有11%(3/28)的评论包含了信度分析。项目评估确定了11个低报项目(≥50%的研究中缺失)。在确定的10个批评中,最常见的是项目不适用于不同的研究类型和对实现的主观解释。结论:我们的两级分析揭示了相当大的报告差距、低报项目、依从性相关因素和常见的索赔批评,为研究人员和期刊提供了可操作的见解,以提高人工智能研究的透明度、可重复性和报告质量。临床意义:通过对索赔依从性的系统和非系统评价数据的结合,我们的综合发现可以作为帮助研究人员和期刊提高人工智能研究透明度、可重复性和报告质量的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adherence to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM): an umbrella review with a comprehensive two-level analysis.

Purpose: To comprehensively assess Checklist for Artificial Intelligence in Medical Imaging (CLAIM) adherence in medical imaging artificial intelligence (AI) literature by aggregating data from previous systematic and non-systematic reviews.

Methods: A systematic search of PubMed, Scopus, and Google Scholar identified reviews using the CLAIM to evaluate medical imaging AI studies. Reviews were analyzed at two levels: review level (33 reviews; 1,458 studies) and study level (421 unique studies from 15 reviews). The CLAIM adherence metrics (scores and compliance rates), baseline characteristics, factors influencing adherence, and critiques of the CLAIM were analyzed.

Results: A review-level analysis of 26 reviews (874 studies) found a weighted mean CLAIM score of 25 [standard deviation (SD): 4] and a median of 26 [interquartile range (IQR): 8; 25th-75th percentiles: 20-28]. In a separate review-level analysis involving 18 reviews (993 studies), the weighted mean CLAIM compliance was 63% (SD: 11%), with a median of 66% (IQR: 4%; 25th-75th percentiles: 63%-67%). A study-level analysis of 421 unique studies published between 1997 and 2024 found a median CLAIM score of 26 (IQR: 6; 25th-75th percentiles: 23-29) and a median compliance of 68% (IQR: 16%; 25th-75th percentiles: 59%-75%). Adherence was independently associated with the journal impact factor quartile, publication year, and specific radiology subfields. After guideline publication, CLAIM compliance improved (P = 0.004). Multiple readers provided an evaluation in 85% (28/33) of reviews, but only 11% (3/28) included a reliability analysis. An item-wise evaluation identified 11 underreported items (missing in ≥50% of studies). Among the 10 identified critiques, the most common were item inapplicability to diverse study types and subjective interpretations of fulfillment.

Conclusion: Our two-level analysis revealed considerable reporting gaps, underreported items, factors related to adherence, and common CLAIM critiques, providing actionable insights for researchers and journals to improve transparency, reproducibility, and reporting quality in AI studies.

Clinical significance: By combining data from systematic and non-systematic reviews on CLAIM adherence, our comprehensive findings may serve as targets to help researchers and journals improve transparency, reproducibility, and reporting quality in AI studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostic and interventional radiology
Diagnostic and interventional radiology Medicine-Radiology, Nuclear Medicine and Imaging
自引率
4.80%
发文量
0
期刊介绍: Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English. The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信