花青素和花青素-3-葡萄糖苷可缓解消化性溃疡疾病:体外和体内研究的启示。

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL
Drug Design, Development and Therapy Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S500645
Deshanda Kurniawan Prayoga, Diah Lia Aulifa, Arif Budiman, Jutti Levita, Supat Jiranusornkul
{"title":"花青素和花青素-3-葡萄糖苷可缓解消化性溃疡疾病:体外和体内研究的启示。","authors":"Deshanda Kurniawan Prayoga, Diah Lia Aulifa, Arif Budiman, Jutti Levita, Supat Jiranusornkul","doi":"10.2147/DDDT.S500645","DOIUrl":null,"url":null,"abstract":"<p><p>Peptic ulcer disease (PUD) remains a significant global health issue, affecting millions despite a decrease in overall prevalence. However, complications continue to persist, with substantial mortality rates in regions like India and China. Current treatments, though effective, have limitations, driving interest in plant-derived therapy. Anthocyanins, including cyanidin and cyanidin-3-glucoside (C3G), are known for their antioxidant and anti-inflammatory properties. This study aims to explore the potential of cyanidin and C3G in alleviating PUD, focusing on their mechanisms of action and therapeutic efficacy in preclinical studies. Articles were searched in Scopus and PubMed databases and filtered for publication from 2014 to 2024, resulting in 89 articles from Scopus and 11 articles from PubMed. The articles were further screened by title, abstract, and full text, resulting in 6 articles. Cyanidin and C3G were described to be able to alleviate PUD by inhibiting the cytokine pro-inflammatory, reducing inflammation in gastric mucosa, and reducing lipid peroxidation in the gastric mucosa. These compounds have proven effective in managing other health problems, including peptic ulcers, but more in-depth exploration in clinical settings is required to confirm therapeutic potential in humans. It is necessary to validate the therapeutic efficacy and safety in human populations. This review provides an overview of preclinical studies of cyanidin and C3G, such as in vitro and in vivo, focusing on mechanism of action or their effectiveness in alleviating peptic ulcers.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"841-856"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812437/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cyanidin and Cyanidin-3-Glucoside Alleviate Peptic Ulcer Disease: Insights from in vitro, and in vivo Studies.\",\"authors\":\"Deshanda Kurniawan Prayoga, Diah Lia Aulifa, Arif Budiman, Jutti Levita, Supat Jiranusornkul\",\"doi\":\"10.2147/DDDT.S500645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peptic ulcer disease (PUD) remains a significant global health issue, affecting millions despite a decrease in overall prevalence. However, complications continue to persist, with substantial mortality rates in regions like India and China. Current treatments, though effective, have limitations, driving interest in plant-derived therapy. Anthocyanins, including cyanidin and cyanidin-3-glucoside (C3G), are known for their antioxidant and anti-inflammatory properties. This study aims to explore the potential of cyanidin and C3G in alleviating PUD, focusing on their mechanisms of action and therapeutic efficacy in preclinical studies. Articles were searched in Scopus and PubMed databases and filtered for publication from 2014 to 2024, resulting in 89 articles from Scopus and 11 articles from PubMed. The articles were further screened by title, abstract, and full text, resulting in 6 articles. Cyanidin and C3G were described to be able to alleviate PUD by inhibiting the cytokine pro-inflammatory, reducing inflammation in gastric mucosa, and reducing lipid peroxidation in the gastric mucosa. These compounds have proven effective in managing other health problems, including peptic ulcers, but more in-depth exploration in clinical settings is required to confirm therapeutic potential in humans. It is necessary to validate the therapeutic efficacy and safety in human populations. This review provides an overview of preclinical studies of cyanidin and C3G, such as in vitro and in vivo, focusing on mechanism of action or their effectiveness in alleviating peptic ulcers.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"19 \",\"pages\":\"841-856\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S500645\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S500645","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyanidin and Cyanidin-3-Glucoside Alleviate Peptic Ulcer Disease: Insights from in vitro, and in vivo Studies.

Peptic ulcer disease (PUD) remains a significant global health issue, affecting millions despite a decrease in overall prevalence. However, complications continue to persist, with substantial mortality rates in regions like India and China. Current treatments, though effective, have limitations, driving interest in plant-derived therapy. Anthocyanins, including cyanidin and cyanidin-3-glucoside (C3G), are known for their antioxidant and anti-inflammatory properties. This study aims to explore the potential of cyanidin and C3G in alleviating PUD, focusing on their mechanisms of action and therapeutic efficacy in preclinical studies. Articles were searched in Scopus and PubMed databases and filtered for publication from 2014 to 2024, resulting in 89 articles from Scopus and 11 articles from PubMed. The articles were further screened by title, abstract, and full text, resulting in 6 articles. Cyanidin and C3G were described to be able to alleviate PUD by inhibiting the cytokine pro-inflammatory, reducing inflammation in gastric mucosa, and reducing lipid peroxidation in the gastric mucosa. These compounds have proven effective in managing other health problems, including peptic ulcers, but more in-depth exploration in clinical settings is required to confirm therapeutic potential in humans. It is necessary to validate the therapeutic efficacy and safety in human populations. This review provides an overview of preclinical studies of cyanidin and C3G, such as in vitro and in vivo, focusing on mechanism of action or their effectiveness in alleviating peptic ulcers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信