Zhanguo Gao, Yongmei Yu, Kristin Eckel-Mahan, Mikhail G. Kolonin
{"title":"TERT敲除脂肪细胞祖细胞的热量限制和端粒保存并不能拯救由于脂肪细胞线粒体TERT功能导致的代谢功能障碍小鼠。","authors":"Zhanguo Gao, Yongmei Yu, Kristin Eckel-Mahan, Mikhail G. Kolonin","doi":"10.1111/acel.14499","DOIUrl":null,"url":null,"abstract":"<p>Inactivation of telomerase (TERT) in adipocyte progenitor cells (APC) expedites telomere attrition, and the onset of diabetes in mice fed high-fat diet (HFD), which promotes APC over-proliferation and replicative senescence. Here, we show that time-restricted feeding or caloric restriction in the postnatal development of mice subsequently subjected to HFD prevents telomere attrition but not glucose intolerance. This metabolic effect of dietary intervention was not observed for mice with TERT KO in endothelial or myeloid cells. To characterize the telomere-independent effects of <i>TERT</i> in the APC lineage, we analyzed mice with <i>TERT</i> knockout in mature adipocytes (AD-TERT-KO), which do not proliferate and avoid telomere attrition. Analysis of adipocytes from AD-TERT-KO mice indicated reliance on glycolysis and decreased mitochondrial oxidative metabolism. We show that AD-TERT-KO mice have reduced cold tolerance and metabolism abnormality indicating a defect in adaptive thermogenesis, characteristic of aging. Conversely, ectopic TERT expression in brown adipocytes-induced mitochondrial oxidation and thermogenic gene expression. We conclude that TERT plays an important non-canonical function in the mitochondria of adipocytes.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 3","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14499","citationCount":"0","resultStr":"{\"title\":\"Caloric Restriction and Telomere Preservation in TERT Knockout Adipocyte Progenitors Does Not Rescue Mice From Metabolic Dysfunction due to a TERT Function in Adipocyte Mitochondria\",\"authors\":\"Zhanguo Gao, Yongmei Yu, Kristin Eckel-Mahan, Mikhail G. Kolonin\",\"doi\":\"10.1111/acel.14499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inactivation of telomerase (TERT) in adipocyte progenitor cells (APC) expedites telomere attrition, and the onset of diabetes in mice fed high-fat diet (HFD), which promotes APC over-proliferation and replicative senescence. Here, we show that time-restricted feeding or caloric restriction in the postnatal development of mice subsequently subjected to HFD prevents telomere attrition but not glucose intolerance. This metabolic effect of dietary intervention was not observed for mice with TERT KO in endothelial or myeloid cells. To characterize the telomere-independent effects of <i>TERT</i> in the APC lineage, we analyzed mice with <i>TERT</i> knockout in mature adipocytes (AD-TERT-KO), which do not proliferate and avoid telomere attrition. Analysis of adipocytes from AD-TERT-KO mice indicated reliance on glycolysis and decreased mitochondrial oxidative metabolism. We show that AD-TERT-KO mice have reduced cold tolerance and metabolism abnormality indicating a defect in adaptive thermogenesis, characteristic of aging. Conversely, ectopic TERT expression in brown adipocytes-induced mitochondrial oxidation and thermogenic gene expression. We conclude that TERT plays an important non-canonical function in the mitochondria of adipocytes.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"24 3\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14499\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14499\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14499","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Caloric Restriction and Telomere Preservation in TERT Knockout Adipocyte Progenitors Does Not Rescue Mice From Metabolic Dysfunction due to a TERT Function in Adipocyte Mitochondria
Inactivation of telomerase (TERT) in adipocyte progenitor cells (APC) expedites telomere attrition, and the onset of diabetes in mice fed high-fat diet (HFD), which promotes APC over-proliferation and replicative senescence. Here, we show that time-restricted feeding or caloric restriction in the postnatal development of mice subsequently subjected to HFD prevents telomere attrition but not glucose intolerance. This metabolic effect of dietary intervention was not observed for mice with TERT KO in endothelial or myeloid cells. To characterize the telomere-independent effects of TERT in the APC lineage, we analyzed mice with TERT knockout in mature adipocytes (AD-TERT-KO), which do not proliferate and avoid telomere attrition. Analysis of adipocytes from AD-TERT-KO mice indicated reliance on glycolysis and decreased mitochondrial oxidative metabolism. We show that AD-TERT-KO mice have reduced cold tolerance and metabolism abnormality indicating a defect in adaptive thermogenesis, characteristic of aging. Conversely, ectopic TERT expression in brown adipocytes-induced mitochondrial oxidation and thermogenic gene expression. We conclude that TERT plays an important non-canonical function in the mitochondria of adipocytes.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.