Ranjit Shaw, Komal Patel, Niyamat M. A. Chimthanawala, Sadhana Sathaye, Samir K Maji
{"title":"肽基功能性淀粉样蛋白水凝胶促进正常和糖尿病大鼠模型的伤口愈合。","authors":"Ranjit Shaw, Komal Patel, Niyamat M. A. Chimthanawala, Sadhana Sathaye, Samir K Maji","doi":"10.1002/adhm.202403560","DOIUrl":null,"url":null,"abstract":"<p>The inability to heal on time is a key component of chronic wounds, which can result in economic, psychological, and physiological burdens. Hydrogels based on amyloid can imitate the extracellular matrix and function as scaffolds for healing wounds. In this direction, a wound dressing inspired by peptide-based amyloid hydrogel is fabricated here. The results demonstrate that the amyloid hydrogel improves the three essential components of skin tissue regeneration: cell migration, proliferation, and collagen remodeling, both in vitro and in vivo. Furthermore, the amyloid hydrogel accelerates wound healing and promotes wound closure within 9 and 15 d in normal and diabetic rats, respectively. Microscopic evaluation of the wound region demonstrates the ultimate stages of regeneration and skin reformation toward normal skin compared to the untreated wound. Hematoxylin and eosin-stained hydrogel-treated wound sites reveal faster dermal bridging, angiogenesis, and epidermal repair in both acute and chronic conditions. The hydrogel creates an environment that encourages the growth of dermal fibroblasts and the release of cytokines, decreasing inflammation with concomitant enhancement of collagen production at the site of injury. Thus, these findings suggest that amyloid-based hydrogel can be a promising candidate for application in acute and chronic wound healing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 9","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide-Based Functional Amyloid Hydrogel Enhances Wound Healing in Normal and Diabetic Rat Models\",\"authors\":\"Ranjit Shaw, Komal Patel, Niyamat M. A. Chimthanawala, Sadhana Sathaye, Samir K Maji\",\"doi\":\"10.1002/adhm.202403560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The inability to heal on time is a key component of chronic wounds, which can result in economic, psychological, and physiological burdens. Hydrogels based on amyloid can imitate the extracellular matrix and function as scaffolds for healing wounds. In this direction, a wound dressing inspired by peptide-based amyloid hydrogel is fabricated here. The results demonstrate that the amyloid hydrogel improves the three essential components of skin tissue regeneration: cell migration, proliferation, and collagen remodeling, both in vitro and in vivo. Furthermore, the amyloid hydrogel accelerates wound healing and promotes wound closure within 9 and 15 d in normal and diabetic rats, respectively. Microscopic evaluation of the wound region demonstrates the ultimate stages of regeneration and skin reformation toward normal skin compared to the untreated wound. Hematoxylin and eosin-stained hydrogel-treated wound sites reveal faster dermal bridging, angiogenesis, and epidermal repair in both acute and chronic conditions. The hydrogel creates an environment that encourages the growth of dermal fibroblasts and the release of cytokines, decreasing inflammation with concomitant enhancement of collagen production at the site of injury. Thus, these findings suggest that amyloid-based hydrogel can be a promising candidate for application in acute and chronic wound healing.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202403560\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202403560","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Peptide-Based Functional Amyloid Hydrogel Enhances Wound Healing in Normal and Diabetic Rat Models
The inability to heal on time is a key component of chronic wounds, which can result in economic, psychological, and physiological burdens. Hydrogels based on amyloid can imitate the extracellular matrix and function as scaffolds for healing wounds. In this direction, a wound dressing inspired by peptide-based amyloid hydrogel is fabricated here. The results demonstrate that the amyloid hydrogel improves the three essential components of skin tissue regeneration: cell migration, proliferation, and collagen remodeling, both in vitro and in vivo. Furthermore, the amyloid hydrogel accelerates wound healing and promotes wound closure within 9 and 15 d in normal and diabetic rats, respectively. Microscopic evaluation of the wound region demonstrates the ultimate stages of regeneration and skin reformation toward normal skin compared to the untreated wound. Hematoxylin and eosin-stained hydrogel-treated wound sites reveal faster dermal bridging, angiogenesis, and epidermal repair in both acute and chronic conditions. The hydrogel creates an environment that encourages the growth of dermal fibroblasts and the release of cytokines, decreasing inflammation with concomitant enhancement of collagen production at the site of injury. Thus, these findings suggest that amyloid-based hydrogel can be a promising candidate for application in acute and chronic wound healing.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.