使用环境电离质谱和机器学习的虫草快速代谢分析和认证。

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-11 DOI:10.1007/s00216-025-05776-5
Wenbo Ma, Mengyang Song, Zhenyang Ji, Yiping Liu, Pengjun Na, Yuze Li, Zongxiu Nie
{"title":"使用环境电离质谱和机器学习的虫草快速代谢分析和认证。","authors":"Wenbo Ma, Mengyang Song, Zhenyang Ji, Yiping Liu, Pengjun Na, Yuze Li, Zongxiu Nie","doi":"10.1007/s00216-025-05776-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cordyceps sinensis, a symbiotic organism formed between a fungus and an insect, is celebrated for its substantial medicinal benefits and economic significance in traditional Chinese medicine. However, the market for Cordyceps sinensis is rife with counterfeits, where numerous types of Cordyceps frequently pose as the genuine species, leading to financial losses for consumers. Here, we developed an ambient ionization mass spectrometry for the metabolic analysis of four kinds of Cordyceps. We tentatively identified a total of 81 metabolites, revealing significant differences between wild-type Cordyceps sinensis and its counterfeit counterparts. The heterogeneous distribution of metabolites was also examined. Notably, ergothioneine, an antioxidant, and its precursor hercynine were found to be more abundant in the stroma compared to other sections. Then, a neural network was employed to distinguish between different Cordyceps, achieving an average classification accuracy of 90.3% in blind tests. We demonstrate the potential for on-site detection of Cordyceps using a handheld nano-electrospray ionization source in conjunction with a miniature mass spectrometer, yielding mass spectral profiles comparable to those obtained with a benchtop system.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1935-1945"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid metabolic profiling and authentication of Cordyceps using ambient ionization mass spectrometry and machine learning.\",\"authors\":\"Wenbo Ma, Mengyang Song, Zhenyang Ji, Yiping Liu, Pengjun Na, Yuze Li, Zongxiu Nie\",\"doi\":\"10.1007/s00216-025-05776-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cordyceps sinensis, a symbiotic organism formed between a fungus and an insect, is celebrated for its substantial medicinal benefits and economic significance in traditional Chinese medicine. However, the market for Cordyceps sinensis is rife with counterfeits, where numerous types of Cordyceps frequently pose as the genuine species, leading to financial losses for consumers. Here, we developed an ambient ionization mass spectrometry for the metabolic analysis of four kinds of Cordyceps. We tentatively identified a total of 81 metabolites, revealing significant differences between wild-type Cordyceps sinensis and its counterfeit counterparts. The heterogeneous distribution of metabolites was also examined. Notably, ergothioneine, an antioxidant, and its precursor hercynine were found to be more abundant in the stroma compared to other sections. Then, a neural network was employed to distinguish between different Cordyceps, achieving an average classification accuracy of 90.3% in blind tests. We demonstrate the potential for on-site detection of Cordyceps using a handheld nano-electrospray ionization source in conjunction with a miniature mass spectrometer, yielding mass spectral profiles comparable to those obtained with a benchtop system.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"1935-1945\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-025-05776-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05776-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

冬虫夏草是一种由真菌和昆虫组成的共生生物,在传统中医中以其巨大的药用价值和经济意义而闻名。然而,冬虫夏草市场充斥着假货,许多种类的冬虫夏草经常冒充真品,给消费者带来了经济损失。本研究采用环境电离质谱法对四种冬虫夏草进行代谢分析。我们初步鉴定了总共81种代谢物,揭示了野生型冬虫夏草与假冒冬虫夏草之间的显著差异。还研究了代谢物的异质性分布。值得注意的是,麦角硫因,一种抗氧化剂,和它的前体水仙碱被发现在基质中比其他部分更丰富。然后,利用神经网络对不同的冬虫夏草进行区分,盲测的平均分类准确率达到90.3%。我们展示了使用手持式纳米电喷雾电离源结合微型质谱仪进行虫草现场检测的潜力,得到的质谱曲线可与台式系统获得的质谱曲线相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid metabolic profiling and authentication of Cordyceps using ambient ionization mass spectrometry and machine learning.

Cordyceps sinensis, a symbiotic organism formed between a fungus and an insect, is celebrated for its substantial medicinal benefits and economic significance in traditional Chinese medicine. However, the market for Cordyceps sinensis is rife with counterfeits, where numerous types of Cordyceps frequently pose as the genuine species, leading to financial losses for consumers. Here, we developed an ambient ionization mass spectrometry for the metabolic analysis of four kinds of Cordyceps. We tentatively identified a total of 81 metabolites, revealing significant differences between wild-type Cordyceps sinensis and its counterfeit counterparts. The heterogeneous distribution of metabolites was also examined. Notably, ergothioneine, an antioxidant, and its precursor hercynine were found to be more abundant in the stroma compared to other sections. Then, a neural network was employed to distinguish between different Cordyceps, achieving an average classification accuracy of 90.3% in blind tests. We demonstrate the potential for on-site detection of Cordyceps using a handheld nano-electrospray ionization source in conjunction with a miniature mass spectrometer, yielding mass spectral profiles comparable to those obtained with a benchtop system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信