Vincent Verjans, Christian L. E. Franzke, Sun-Seon Lee, In-Won Kim, Simone Tilmes, David M. Lawrence, Francis Vitt, Fang Li
{"title":"量化二氧化碳对闪电、野火和气候相互作用的强迫效应","authors":"Vincent Verjans, Christian L. E. Franzke, Sun-Seon Lee, In-Won Kim, Simone Tilmes, David M. Lawrence, Francis Vitt, Fang Li","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Climate change affects lightning frequency and wildfire intensity globally. To date, model limitations have prevented quantifying climate-lightning-wildfire interactions comprehensively. We exploit advances in Earth System modeling to examine these three-way interactions and their sensitivities to idealized CO<sub>2</sub> forcing in 140-year simulations. Lightning sensitivity to global temperature change (+1.6 ± 0.1% per kelvin) is mitigated by compensating atmospheric effects. Global burned area sensitivity to temperature (+13.8 ± 0.3% per kelvin) is largely driven by intensified fire weather and increased biomass but marginally by lightning changes. We find a universal law characterizing regional-scale modeled fire activity and its CO<sub>2</sub> sensitivity, consistent with basic principles of statistical mechanics. Last, a negative climate feedback through intensified aerosol direct effect from fire emissions reaches an equivalent decrease of 0.91 ± 0.01% in CO<sub>2</sub> radiative forcing. However, this feedback contributes to polar amplification. Our analysis shows that climate-lightning-wildfire interactions involve multiple compensating and amplifying feedbacks, which are sensitive to anthropogenic CO<sub>2</sub> forcing.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 7","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt5088","citationCount":"0","resultStr":"{\"title\":\"Quantifying CO2 forcing effects on lightning, wildfires, and climate interactions\",\"authors\":\"Vincent Verjans, Christian L. E. Franzke, Sun-Seon Lee, In-Won Kim, Simone Tilmes, David M. Lawrence, Francis Vitt, Fang Li\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Climate change affects lightning frequency and wildfire intensity globally. To date, model limitations have prevented quantifying climate-lightning-wildfire interactions comprehensively. We exploit advances in Earth System modeling to examine these three-way interactions and their sensitivities to idealized CO<sub>2</sub> forcing in 140-year simulations. Lightning sensitivity to global temperature change (+1.6 ± 0.1% per kelvin) is mitigated by compensating atmospheric effects. Global burned area sensitivity to temperature (+13.8 ± 0.3% per kelvin) is largely driven by intensified fire weather and increased biomass but marginally by lightning changes. We find a universal law characterizing regional-scale modeled fire activity and its CO<sub>2</sub> sensitivity, consistent with basic principles of statistical mechanics. Last, a negative climate feedback through intensified aerosol direct effect from fire emissions reaches an equivalent decrease of 0.91 ± 0.01% in CO<sub>2</sub> radiative forcing. However, this feedback contributes to polar amplification. Our analysis shows that climate-lightning-wildfire interactions involve multiple compensating and amplifying feedbacks, which are sensitive to anthropogenic CO<sub>2</sub> forcing.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt5088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt5088\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt5088","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quantifying CO2 forcing effects on lightning, wildfires, and climate interactions
Climate change affects lightning frequency and wildfire intensity globally. To date, model limitations have prevented quantifying climate-lightning-wildfire interactions comprehensively. We exploit advances in Earth System modeling to examine these three-way interactions and their sensitivities to idealized CO2 forcing in 140-year simulations. Lightning sensitivity to global temperature change (+1.6 ± 0.1% per kelvin) is mitigated by compensating atmospheric effects. Global burned area sensitivity to temperature (+13.8 ± 0.3% per kelvin) is largely driven by intensified fire weather and increased biomass but marginally by lightning changes. We find a universal law characterizing regional-scale modeled fire activity and its CO2 sensitivity, consistent with basic principles of statistical mechanics. Last, a negative climate feedback through intensified aerosol direct effect from fire emissions reaches an equivalent decrease of 0.91 ± 0.01% in CO2 radiative forcing. However, this feedback contributes to polar amplification. Our analysis shows that climate-lightning-wildfire interactions involve multiple compensating and amplifying feedbacks, which are sensitive to anthropogenic CO2 forcing.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.