非弹性电子散射的实时时变密度泛函理论研究:四羰基镍分子反应中的能量转移

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Menghao Gao, Xiuyao Lang, Zhihua Zheng, Cailian Yu, Zhiyi Xu and Xiaolong Yao*, 
{"title":"非弹性电子散射的实时时变密度泛函理论研究:四羰基镍分子反应中的能量转移","authors":"Menghao Gao,&nbsp;Xiuyao Lang,&nbsp;Zhihua Zheng,&nbsp;Cailian Yu,&nbsp;Zhiyi Xu and Xiaolong Yao*,&nbsp;","doi":"10.1021/acs.jpclett.4c0343010.1021/acs.jpclett.4c03430","DOIUrl":null,"url":null,"abstract":"<p >Inelastic scattering between electron wave packets and precursor organometallic molecules is key to understanding electron-induced excitation in gas-phase and surface chemical reactions. This study focuses on the scattering process and subsequent intramolecular dissociation of electronically excited molecules. Using Ni(CO)<sub>4</sub>, the precursor in electron-enhanced atomic layer deposition for nickel thin film growth, real-time time-dependent density functional theory (TDDFT) models the energy transfer and internal excitation of the 0–700 eV electron wave packet colliding with Ni(CO)<sub>4</sub>. The results show that energy transfer depends on the wave packet size, collision direction, parameters, and electron energy. Energy transfer is enhanced in the presence of water molecules. Additionally, the inelastic scattering cross section for CH<sub>4</sub> molecules is calculated and compared with database values to assess the accuracy and determine the scaling factor. This study highlights TDDFT’s potential for modeling electron-induced chemical reactions and provides the foundation for future research on electronic excitation in such processes.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 6","pages":"1461–1469 1461–1469"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Time-Dependent Density Functional Theory Study of Inelastic Electron Scattering: Energy Transfer in Tetracarbonyl Nickel Molecule Reactions\",\"authors\":\"Menghao Gao,&nbsp;Xiuyao Lang,&nbsp;Zhihua Zheng,&nbsp;Cailian Yu,&nbsp;Zhiyi Xu and Xiaolong Yao*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.4c0343010.1021/acs.jpclett.4c03430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inelastic scattering between electron wave packets and precursor organometallic molecules is key to understanding electron-induced excitation in gas-phase and surface chemical reactions. This study focuses on the scattering process and subsequent intramolecular dissociation of electronically excited molecules. Using Ni(CO)<sub>4</sub>, the precursor in electron-enhanced atomic layer deposition for nickel thin film growth, real-time time-dependent density functional theory (TDDFT) models the energy transfer and internal excitation of the 0–700 eV electron wave packet colliding with Ni(CO)<sub>4</sub>. The results show that energy transfer depends on the wave packet size, collision direction, parameters, and electron energy. Energy transfer is enhanced in the presence of water molecules. Additionally, the inelastic scattering cross section for CH<sub>4</sub> molecules is calculated and compared with database values to assess the accuracy and determine the scaling factor. This study highlights TDDFT’s potential for modeling electron-induced chemical reactions and provides the foundation for future research on electronic excitation in such processes.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 6\",\"pages\":\"1461–1469 1461–1469\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03430\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03430","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电子波包和前体有机金属分子之间的非弹性散射是理解气相和表面化学反应中电子诱导激发的关键。本研究的重点是电子激发分子的散射过程和随后的分子内解离。利用镍薄膜生长中电子增强原子层沉积的前驱体Ni(CO)4,实时时变密度泛函理论(TDDFT)模拟了0-700 eV电子波包与Ni(CO)4碰撞时的能量传递和内部激发。结果表明,能量传递与波包大小、碰撞方向、参数和电子能量有关。有水分子存在时,能量传递增强。此外,计算了CH4分子的非弹性散射截面,并与数据库值进行了比较,以评估精度并确定比例因子。该研究突出了TDDFT在模拟电子诱导化学反应方面的潜力,为今后研究电子激发过程提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Real-Time Time-Dependent Density Functional Theory Study of Inelastic Electron Scattering: Energy Transfer in Tetracarbonyl Nickel Molecule Reactions

Real-Time Time-Dependent Density Functional Theory Study of Inelastic Electron Scattering: Energy Transfer in Tetracarbonyl Nickel Molecule Reactions

Inelastic scattering between electron wave packets and precursor organometallic molecules is key to understanding electron-induced excitation in gas-phase and surface chemical reactions. This study focuses on the scattering process and subsequent intramolecular dissociation of electronically excited molecules. Using Ni(CO)4, the precursor in electron-enhanced atomic layer deposition for nickel thin film growth, real-time time-dependent density functional theory (TDDFT) models the energy transfer and internal excitation of the 0–700 eV electron wave packet colliding with Ni(CO)4. The results show that energy transfer depends on the wave packet size, collision direction, parameters, and electron energy. Energy transfer is enhanced in the presence of water molecules. Additionally, the inelastic scattering cross section for CH4 molecules is calculated and compared with database values to assess the accuracy and determine the scaling factor. This study highlights TDDFT’s potential for modeling electron-induced chemical reactions and provides the foundation for future research on electronic excitation in such processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信