幂零群的R∞$R_\infty$ -性质和可通约性

IF 0.8 3区 数学 Q2 MATHEMATICS
Maarten Lathouwers, Thomas Witdouck
{"title":"幂零群的R∞$R_\\infty$ -性质和可通约性","authors":"Maarten Lathouwers,&nbsp;Thomas Witdouck","doi":"10.1002/mana.202400154","DOIUrl":null,"url":null,"abstract":"<p>For finitely generated torsion-free nilpotent groups, the associated Mal'cev Lie algebra of the group is used frequently when studying the <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$R_\\infty$</annotation>\n </semantics></math>-property. Two such groups have isomorphic Mal'cev Lie algebras if and only if they are abstractly commensurable. We show that the <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$R_\\infty$</annotation>\n </semantics></math>-property is not invariant under abstract commensurability within the class of finitely generated torsion-free nilpotent groups by providing counterexamples within a class of 2-step nilpotent groups associated to edge-weighted graphs. These groups are abstractly commensurable to 2-step nilpotent quotients of right-angled Artin groups.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"602-616"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The \\n \\n \\n R\\n ∞\\n \\n $R_\\\\infty$\\n -property and commensurability for nilpotent groups\",\"authors\":\"Maarten Lathouwers,&nbsp;Thomas Witdouck\",\"doi\":\"10.1002/mana.202400154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For finitely generated torsion-free nilpotent groups, the associated Mal'cev Lie algebra of the group is used frequently when studying the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>∞</mi>\\n </msub>\\n <annotation>$R_\\\\infty$</annotation>\\n </semantics></math>-property. Two such groups have isomorphic Mal'cev Lie algebras if and only if they are abstractly commensurable. We show that the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>∞</mi>\\n </msub>\\n <annotation>$R_\\\\infty$</annotation>\\n </semantics></math>-property is not invariant under abstract commensurability within the class of finitely generated torsion-free nilpotent groups by providing counterexamples within a class of 2-step nilpotent groups associated to edge-weighted graphs. These groups are abstractly commensurable to 2-step nilpotent quotients of right-angled Artin groups.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"602-616\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400154\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400154","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于有限生成的无扭转幂零群,在研究群的R∞$R_\infty$ -性质时,经常使用群的相关Mal'cev Lie代数。两个这样的群当且仅当它们抽象可通约时具有同构的马尔切夫李代数。我们通过提供与边权图相关的2步幂零群的反例,证明了在有限生成的无扭转幂零群的类中,R∞$R_\infty$ -性质在抽象通约性下是不不变的。这些群抽象地可与直角Artin群的2步幂零商通约。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The R ∞ $R_\infty$ -property and commensurability for nilpotent groups

For finitely generated torsion-free nilpotent groups, the associated Mal'cev Lie algebra of the group is used frequently when studying the R $R_\infty$ -property. Two such groups have isomorphic Mal'cev Lie algebras if and only if they are abstractly commensurable. We show that the R $R_\infty$ -property is not invariant under abstract commensurability within the class of finitely generated torsion-free nilpotent groups by providing counterexamples within a class of 2-step nilpotent groups associated to edge-weighted graphs. These groups are abstractly commensurable to 2-step nilpotent quotients of right-angled Artin groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信