基于深度学习的可再生能源智能电网集成障碍函数超扭转滑模控制

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
IET Smart Grid Pub Date : 2024-12-17 DOI:10.1049/stg2.12201
Hammad Armghan, Yinliang Xu, Yixun Xue, Naghmash Ali
{"title":"基于深度学习的可再生能源智能电网集成障碍函数超扭转滑模控制","authors":"Hammad Armghan,&nbsp;Yinliang Xu,&nbsp;Yixun Xue,&nbsp;Naghmash Ali","doi":"10.1049/stg2.12201","DOIUrl":null,"url":null,"abstract":"<p>This study presents a two-step controller design for integrating wind and photovoltaic energy systems into the smart grid. In the first stage, an enhanced deep neural network (DNN), optimised by particle swarm optimisation and a genetic algorithm, is employed to generate maximum power point (MPP) targets for both wind and solar systems. The DNN incorporates advanced features like hyperparameter tuning, softmax attention, dropout, and early stopping to improve prediction accuracy and prevent overfitting. In the second stage, a barrier-function-based adaptive super-twisting sliding mode controller is developed to track the MPP and maintain stable DC bus voltage. This controller effectively reduces chattering and operates without requiring detailed knowledge of disturbance limits. The proposed design aims to maximise power extraction, ensure DC bus voltage stability, and enable smooth power delivery to the grid. MATLAB simulations and real-time hardware testing validate the controller's performance, demonstrating significant improvements over traditional methods.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12201","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based barrier-function super-twisting sliding mode control for integrating renewables in smart grid\",\"authors\":\"Hammad Armghan,&nbsp;Yinliang Xu,&nbsp;Yixun Xue,&nbsp;Naghmash Ali\",\"doi\":\"10.1049/stg2.12201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a two-step controller design for integrating wind and photovoltaic energy systems into the smart grid. In the first stage, an enhanced deep neural network (DNN), optimised by particle swarm optimisation and a genetic algorithm, is employed to generate maximum power point (MPP) targets for both wind and solar systems. The DNN incorporates advanced features like hyperparameter tuning, softmax attention, dropout, and early stopping to improve prediction accuracy and prevent overfitting. In the second stage, a barrier-function-based adaptive super-twisting sliding mode controller is developed to track the MPP and maintain stable DC bus voltage. This controller effectively reduces chattering and operates without requiring detailed knowledge of disturbance limits. The proposed design aims to maximise power extraction, ensure DC bus voltage stability, and enable smooth power delivery to the grid. MATLAB simulations and real-time hardware testing validate the controller's performance, demonstrating significant improvements over traditional methods.</p>\",\"PeriodicalId\":36490,\"journal\":{\"name\":\"IET Smart Grid\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Smart Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种将风能和光伏能源系统整合到智能电网中的两步控制器设计。在第一阶段,采用粒子群优化和遗传算法优化的增强型深度神经网络(DNN),为风能和太阳能系统生成最大功率点(MPP)目标。深度神经网络结合了超参数调整、softmax注意、dropout和早期停止等高级功能,以提高预测精度并防止过拟合。在第二阶段,开发了一种基于势垒函数的自适应超扭转滑模控制器来跟踪MPP并保持直流母线电压的稳定。该控制器有效地减少了抖振和操作,而不需要详细的干扰限制知识。提出的设计旨在最大限度地提高电力提取,确保直流母线电压稳定,并使电力顺利输送到电网。MATLAB仿真和实时硬件测试验证了控制器的性能,显示出比传统方法有显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning-based barrier-function super-twisting sliding mode control for integrating renewables in smart grid

Deep learning-based barrier-function super-twisting sliding mode control for integrating renewables in smart grid

This study presents a two-step controller design for integrating wind and photovoltaic energy systems into the smart grid. In the first stage, an enhanced deep neural network (DNN), optimised by particle swarm optimisation and a genetic algorithm, is employed to generate maximum power point (MPP) targets for both wind and solar systems. The DNN incorporates advanced features like hyperparameter tuning, softmax attention, dropout, and early stopping to improve prediction accuracy and prevent overfitting. In the second stage, a barrier-function-based adaptive super-twisting sliding mode controller is developed to track the MPP and maintain stable DC bus voltage. This controller effectively reduces chattering and operates without requiring detailed knowledge of disturbance limits. The proposed design aims to maximise power extraction, ensure DC bus voltage stability, and enable smooth power delivery to the grid. MATLAB simulations and real-time hardware testing validate the controller's performance, demonstrating significant improvements over traditional methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信