Cynthia Albracht, François Buscot, Nico Eisenhauer, Alban Gebler, Sylvie Herrmann, Anja Schmidt, Mika Tarkka, Kezia Goldmann
{"title":"无脊椎动物的减少对橡树相关微生物群的影响微乎其微","authors":"Cynthia Albracht, François Buscot, Nico Eisenhauer, Alban Gebler, Sylvie Herrmann, Anja Schmidt, Mika Tarkka, Kezia Goldmann","doi":"10.1111/1462-2920.70051","DOIUrl":null,"url":null,"abstract":"<p>Recently, biomass of invertebrates has declined substantially at many locations with the implications of this biodiversity loss for ecosystems yet unknown. Through multitrophic interactions, plant- and soil-associated microbiomes might be altered, causing a cascade of changes on diverse ecosystem processes. We simulated aboveground invertebrate decline in grassland ecosystems with two levels of invertebrate biomass (36% and 100% of current ambient conditions), plus a control with no invertebrates present. Each standardised grassland mesocosm additionally contained one clonal <i>Quercus robur</i> L. sapling to investigate the extent of invertebrate decline effects exceeding grasslands. We investigated oak biomass partitioning and mycorrhiza formation, oak leaf transcriptome and microbiome composition of leaves, roots and rhizosphere. While invertebrate decline did not significantly affect oak performance and herbivory-related gene expression, fungal communities presented an increase of saprotrophs and pathogens, especially in leaves. Among leaf-inhabiting bacteria, Proteobacteria and Actinobacteria increased under invertebrate decline. The belowground microbiome was only little affected. But, invertebrate decline came along with a reduced influence on predators leading to an elevated aphids infestation that proofed able to alter microbiota. Our findings establish a strong difference between above- and belowground, with the impacts of invertebrate decline being more pronounced in the leaf microbiome.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70051","citationCount":"0","resultStr":"{\"title\":\"Invertebrate Decline Has Minimal Effects on Oak-Associated Microbiomes\",\"authors\":\"Cynthia Albracht, François Buscot, Nico Eisenhauer, Alban Gebler, Sylvie Herrmann, Anja Schmidt, Mika Tarkka, Kezia Goldmann\",\"doi\":\"10.1111/1462-2920.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, biomass of invertebrates has declined substantially at many locations with the implications of this biodiversity loss for ecosystems yet unknown. Through multitrophic interactions, plant- and soil-associated microbiomes might be altered, causing a cascade of changes on diverse ecosystem processes. We simulated aboveground invertebrate decline in grassland ecosystems with two levels of invertebrate biomass (36% and 100% of current ambient conditions), plus a control with no invertebrates present. Each standardised grassland mesocosm additionally contained one clonal <i>Quercus robur</i> L. sapling to investigate the extent of invertebrate decline effects exceeding grasslands. We investigated oak biomass partitioning and mycorrhiza formation, oak leaf transcriptome and microbiome composition of leaves, roots and rhizosphere. While invertebrate decline did not significantly affect oak performance and herbivory-related gene expression, fungal communities presented an increase of saprotrophs and pathogens, especially in leaves. Among leaf-inhabiting bacteria, Proteobacteria and Actinobacteria increased under invertebrate decline. The belowground microbiome was only little affected. But, invertebrate decline came along with a reduced influence on predators leading to an elevated aphids infestation that proofed able to alter microbiota. Our findings establish a strong difference between above- and belowground, with the impacts of invertebrate decline being more pronounced in the leaf microbiome.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70051\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70051","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Invertebrate Decline Has Minimal Effects on Oak-Associated Microbiomes
Recently, biomass of invertebrates has declined substantially at many locations with the implications of this biodiversity loss for ecosystems yet unknown. Through multitrophic interactions, plant- and soil-associated microbiomes might be altered, causing a cascade of changes on diverse ecosystem processes. We simulated aboveground invertebrate decline in grassland ecosystems with two levels of invertebrate biomass (36% and 100% of current ambient conditions), plus a control with no invertebrates present. Each standardised grassland mesocosm additionally contained one clonal Quercus robur L. sapling to investigate the extent of invertebrate decline effects exceeding grasslands. We investigated oak biomass partitioning and mycorrhiza formation, oak leaf transcriptome and microbiome composition of leaves, roots and rhizosphere. While invertebrate decline did not significantly affect oak performance and herbivory-related gene expression, fungal communities presented an increase of saprotrophs and pathogens, especially in leaves. Among leaf-inhabiting bacteria, Proteobacteria and Actinobacteria increased under invertebrate decline. The belowground microbiome was only little affected. But, invertebrate decline came along with a reduced influence on predators leading to an elevated aphids infestation that proofed able to alter microbiota. Our findings establish a strong difference between above- and belowground, with the impacts of invertebrate decline being more pronounced in the leaf microbiome.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens