书写标志:一种可解释的机器学习方法用于阿尔茨海默病的手写分类

IF 3.3 Q3 ENGINEERING, BIOMEDICAL
Ngoc Truc Ngan Ho, Paulina Gonzalez, Gideon K. Gogovi
{"title":"书写标志:一种可解释的机器学习方法用于阿尔茨海默病的手写分类","authors":"Ngoc Truc Ngan Ho,&nbsp;Paulina Gonzalez,&nbsp;Gideon K. Gogovi","doi":"10.1049/htl2.70006","DOIUrl":null,"url":null,"abstract":"<p>Alzheimer's disease is a global health challenge, emphasizing the need for early detection to enable timely intervention and improve outcomes. This study analyzes handwriting data from individuals with and without Alzheimer's to identify predictive features across copying, graphic and memory-based tasks. Machine learning models, including Random Forest, Bootstrap Aggregating (Bagging), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost) and Gradient Boosting, were applied to classify patients, with SHapley Additive exPlanations (SHAP) enhancing model interpretability. Time-related features were crucial in copying and graphic tasks, reflecting cognitive processing speed, while pressure-related features were significant in memory tasks, indicating recall confidence. Simpler graphic tasks showed strong discriminatory power, aiding early detection. Performance metrics demonstrated model effectiveness: For memory tasks, Random Forest achieved the highest accuracy (<span></span><math>\n <semantics>\n <mrow>\n <mn>0.840</mn>\n <mo>±</mo>\n <mn>0.038</mn>\n </mrow>\n <annotation>$0.840 \\pm 0.038$</annotation>\n </semantics></math>), while Bagged SVC was the lowest (<span></span><math>\n <semantics>\n <mrow>\n <mn>0.617</mn>\n <mo>±</mo>\n <mn>0.046</mn>\n </mrow>\n <annotation>$0.617 \\pm 0.046$</annotation>\n </semantics></math>). Copying tasks recorded a peak accuracy of <span></span><math>\n <semantics>\n <mrow>\n <mn>0.804</mn>\n <mo>±</mo>\n <mn>0.075</mn>\n </mrow>\n <annotation>$0.804 \\pm 0.075$</annotation>\n </semantics></math> with Gradient Boost and a low of <span></span><math>\n <semantics>\n <mrow>\n <mn>0.566</mn>\n <mo>±</mo>\n <mn>0.032</mn>\n </mrow>\n <annotation>$0.566 \\pm 0.032$</annotation>\n </semantics></math> for Bagged SVC. Graphic tasks reached <span></span><math>\n <semantics>\n <mrow>\n <mn>0.799</mn>\n <mo>±</mo>\n <mn>0.041</mn>\n </mrow>\n <annotation>$0.799 \\pm 0.041$</annotation>\n </semantics></math> with Gradient Boost and 0.643 ± 0.071 with AdaBoost. For all tasks combined, Random Forest excelled (<span></span><math>\n <semantics>\n <mrow>\n <mn>0.854</mn>\n <mo>±</mo>\n <mn>0.033</mn>\n </mrow>\n <annotation>$0.854 \\pm 0.033$</annotation>\n </semantics></math>), while Gradient Boost performed worst (<span></span><math>\n <semantics>\n <mrow>\n <mn>0.598</mn>\n <mo>±</mo>\n <mn>0.151</mn>\n </mrow>\n <annotation>$0.598 \\pm 0.151$</annotation>\n </semantics></math>). These results highlight handwriting analysis's potential in Alzheimer's detection.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.70006","citationCount":"0","resultStr":"{\"title\":\"Writing the Signs: An Explainable Machine Learning Approach for Alzheimer's Disease Classification from Handwriting\",\"authors\":\"Ngoc Truc Ngan Ho,&nbsp;Paulina Gonzalez,&nbsp;Gideon K. Gogovi\",\"doi\":\"10.1049/htl2.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Alzheimer's disease is a global health challenge, emphasizing the need for early detection to enable timely intervention and improve outcomes. This study analyzes handwriting data from individuals with and without Alzheimer's to identify predictive features across copying, graphic and memory-based tasks. Machine learning models, including Random Forest, Bootstrap Aggregating (Bagging), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost) and Gradient Boosting, were applied to classify patients, with SHapley Additive exPlanations (SHAP) enhancing model interpretability. Time-related features were crucial in copying and graphic tasks, reflecting cognitive processing speed, while pressure-related features were significant in memory tasks, indicating recall confidence. Simpler graphic tasks showed strong discriminatory power, aiding early detection. Performance metrics demonstrated model effectiveness: For memory tasks, Random Forest achieved the highest accuracy (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.840</mn>\\n <mo>±</mo>\\n <mn>0.038</mn>\\n </mrow>\\n <annotation>$0.840 \\\\pm 0.038$</annotation>\\n </semantics></math>), while Bagged SVC was the lowest (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.617</mn>\\n <mo>±</mo>\\n <mn>0.046</mn>\\n </mrow>\\n <annotation>$0.617 \\\\pm 0.046$</annotation>\\n </semantics></math>). Copying tasks recorded a peak accuracy of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.804</mn>\\n <mo>±</mo>\\n <mn>0.075</mn>\\n </mrow>\\n <annotation>$0.804 \\\\pm 0.075$</annotation>\\n </semantics></math> with Gradient Boost and a low of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.566</mn>\\n <mo>±</mo>\\n <mn>0.032</mn>\\n </mrow>\\n <annotation>$0.566 \\\\pm 0.032$</annotation>\\n </semantics></math> for Bagged SVC. Graphic tasks reached <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.799</mn>\\n <mo>±</mo>\\n <mn>0.041</mn>\\n </mrow>\\n <annotation>$0.799 \\\\pm 0.041$</annotation>\\n </semantics></math> with Gradient Boost and 0.643 ± 0.071 with AdaBoost. For all tasks combined, Random Forest excelled (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.854</mn>\\n <mo>±</mo>\\n <mn>0.033</mn>\\n </mrow>\\n <annotation>$0.854 \\\\pm 0.033$</annotation>\\n </semantics></math>), while Gradient Boost performed worst (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.598</mn>\\n <mo>±</mo>\\n <mn>0.151</mn>\\n </mrow>\\n <annotation>$0.598 \\\\pm 0.151$</annotation>\\n </semantics></math>). These results highlight handwriting analysis's potential in Alzheimer's detection.</p>\",\"PeriodicalId\":37474,\"journal\":{\"name\":\"Healthcare Technology Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.70006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/htl2.70006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病是一项全球健康挑战,强调需要及早发现,以便及时干预和改善结果。这项研究分析了患有和不患有阿尔茨海默氏症的人的手写数据,以确定在复制、图形和基于记忆的任务中的预测特征。采用随机森林(Random Forest)、Bootstrap Aggregating (Bagging)、Extreme Gradient Boosting (XGBoost)、Light Gradient Boosting Machine (LightGBM)、Adaptive Boosting (AdaBoost)和Gradient Boosting等机器学习模型对患者进行分类,SHapley Additive explanatory (SHAP)增强了模型的可解释性。与时间相关的特征在复制和图形任务中至关重要,反映了认知处理速度,而与压力相关的特征在记忆任务中很重要,表明了回忆的信心。简单的图形任务显示出很强的辨别能力,有助于早期发现。性能指标证明了模型的有效性:对于记忆任务,Random Forest的准确率最高(0.840±0.038$ 0.840 \pm 0.038$), Bagged SVC的准确率最低(0.617±0.046$ 0.617 \pm 0.046$)。使用梯度增强时,复制任务的峰值精度为0.804±0.075$ 0.804 \pm 0.075$,袋装SVC的低精度为0.566±0.032$ 0.566 \pm 0.032$。使用Gradient Boost时图形任务达到0.799±0.041$ 0.799 \pm 0.041$,使用AdaBoost时达到0.643±0.071 $。在所有任务组合中,Random Forest表现优异(0.854±0.033$ 0.854 \pm 0.033$),而Gradient Boost表现最差(0.598±0.151$ 0.598 \pm 0.151$)。这些结果突出了笔迹分析在阿尔茨海默氏症检测中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Writing the Signs: An Explainable Machine Learning Approach for Alzheimer's Disease Classification from Handwriting

Writing the Signs: An Explainable Machine Learning Approach for Alzheimer's Disease Classification from Handwriting

Alzheimer's disease is a global health challenge, emphasizing the need for early detection to enable timely intervention and improve outcomes. This study analyzes handwriting data from individuals with and without Alzheimer's to identify predictive features across copying, graphic and memory-based tasks. Machine learning models, including Random Forest, Bootstrap Aggregating (Bagging), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost) and Gradient Boosting, were applied to classify patients, with SHapley Additive exPlanations (SHAP) enhancing model interpretability. Time-related features were crucial in copying and graphic tasks, reflecting cognitive processing speed, while pressure-related features were significant in memory tasks, indicating recall confidence. Simpler graphic tasks showed strong discriminatory power, aiding early detection. Performance metrics demonstrated model effectiveness: For memory tasks, Random Forest achieved the highest accuracy ( 0.840 ± 0.038 $0.840 \pm 0.038$ ), while Bagged SVC was the lowest ( 0.617 ± 0.046 $0.617 \pm 0.046$ ). Copying tasks recorded a peak accuracy of 0.804 ± 0.075 $0.804 \pm 0.075$ with Gradient Boost and a low of 0.566 ± 0.032 $0.566 \pm 0.032$ for Bagged SVC. Graphic tasks reached 0.799 ± 0.041 $0.799 \pm 0.041$ with Gradient Boost and 0.643 ± 0.071 with AdaBoost. For all tasks combined, Random Forest excelled ( 0.854 ± 0.033 $0.854 \pm 0.033$ ), while Gradient Boost performed worst ( 0.598 ± 0.151 $0.598 \pm 0.151$ ). These results highlight handwriting analysis's potential in Alzheimer's detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信