{"title":"导数插值与超可微正则性","authors":"Armin Rainer, Gerhard Schindl","doi":"10.1002/mana.202300567","DOIUrl":null,"url":null,"abstract":"<p>Interpolation inequalities for <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>m</mi>\n </msup>\n <annotation>$C^m$</annotation>\n </semantics></math> functions allow to bound derivatives of intermediate order <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>j</mi>\n <mo><</mo>\n <mi>m</mi>\n </mrow>\n <annotation>$0 < j<m$</annotation>\n </semantics></math> by bounds for the derivatives of order 0 and <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. We review various interpolation inequalities for <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math>-norms (<span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p \\le \\infty$</annotation>\n </semantics></math>) in arbitrary finite dimensions. They allow us to study ultradifferentiable regularity by lacunary estimates in a comprehensive way, striving for minimal assumptions on the weights.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"617-635"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300567","citationCount":"0","resultStr":"{\"title\":\"Interpolation of derivatives and ultradifferentiable regularity\",\"authors\":\"Armin Rainer, Gerhard Schindl\",\"doi\":\"10.1002/mana.202300567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interpolation inequalities for <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$C^m$</annotation>\\n </semantics></math> functions allow to bound derivatives of intermediate order <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo><</mo>\\n <mi>j</mi>\\n <mo><</mo>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$0 < j<m$</annotation>\\n </semantics></math> by bounds for the derivatives of order 0 and <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>. We review various interpolation inequalities for <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^p$</annotation>\\n </semantics></math>-norms (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo>≤</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 \\\\le p \\\\le \\\\infty$</annotation>\\n </semantics></math>) in arbitrary finite dimensions. They allow us to study ultradifferentiable regularity by lacunary estimates in a comprehensive way, striving for minimal assumptions on the weights.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"617-635\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300567\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300567\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300567","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
C m $C^m$函数的插值不等式允许中阶导数为0 &lt;J & t;M $0 < j<m$通过0阶导数和M $m$的界。我们回顾了任意有限维的L p $L^p$ -范数(1≤p≤∞$1 \le p \le \infty$)的各种插值不等式。它们使我们能够以一种综合的方式通过空间估计来研究超可微正则性,力求对权重的最小假设。
Interpolation of derivatives and ultradifferentiable regularity
Interpolation inequalities for functions allow to bound derivatives of intermediate order by bounds for the derivatives of order 0 and . We review various interpolation inequalities for -norms () in arbitrary finite dimensions. They allow us to study ultradifferentiable regularity by lacunary estimates in a comprehensive way, striving for minimal assumptions on the weights.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index