实际低压直流微电网中基于行波的故障检测与定位

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
IET Smart Grid Pub Date : 2025-01-06 DOI:10.1049/stg2.12207
Sajay Krishnan Paruthiyil, Ali Bidram, Miguel Jimenez Aparicio, Javier Hernandez-Alvidrez, Andrew R. R. Dow, Matthew J. Reno, Daniel Bauer
{"title":"实际低压直流微电网中基于行波的故障检测与定位","authors":"Sajay Krishnan Paruthiyil,&nbsp;Ali Bidram,&nbsp;Miguel Jimenez Aparicio,&nbsp;Javier Hernandez-Alvidrez,&nbsp;Andrew R. R. Dow,&nbsp;Matthew J. Reno,&nbsp;Daniel Bauer","doi":"10.1049/stg2.12207","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses a device-level implementation of a travelling wave (TW) protection device (PD) designed for a real low-voltage DC microgrid. The TWPD fault detection and location algorithm is executed on a commercial digital signal processor (DSP) board, involving signal sampling at 1 MHz via the DSP board's analog-to-digital converter (ADC). The analogue input card measures positive pole, negative pole and pole-to-pole voltages at the TWPD location. Upon a successful fault detection using a second-order high-pass filter, the voltage data is normalised and multi-resolution analysis (MRA) is performed on a 128-sample buffer around the TW arrival time. MRA employs the discrete wavelet transform (DWT) to capture high-frequency voltage patterns, and then the Parseval's energy theorem quantifies these TW characteristics by computing the energy of reconstructed wavelet coefficients. These energy values per decomposed frequency band are the basis for training a random forest classifier that predicts fault location and type. The TWPD is fully implemented and connected to a real DC microgrid in Albuquerque, NM, USA, for validation, and results are shown for field tests verifying the performance under faults.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12207","citationCount":"0","resultStr":"{\"title\":\"Travelling wave-based fault detection and location in a real low-voltage DC microgrid\",\"authors\":\"Sajay Krishnan Paruthiyil,&nbsp;Ali Bidram,&nbsp;Miguel Jimenez Aparicio,&nbsp;Javier Hernandez-Alvidrez,&nbsp;Andrew R. R. Dow,&nbsp;Matthew J. Reno,&nbsp;Daniel Bauer\",\"doi\":\"10.1049/stg2.12207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper discusses a device-level implementation of a travelling wave (TW) protection device (PD) designed for a real low-voltage DC microgrid. The TWPD fault detection and location algorithm is executed on a commercial digital signal processor (DSP) board, involving signal sampling at 1 MHz via the DSP board's analog-to-digital converter (ADC). The analogue input card measures positive pole, negative pole and pole-to-pole voltages at the TWPD location. Upon a successful fault detection using a second-order high-pass filter, the voltage data is normalised and multi-resolution analysis (MRA) is performed on a 128-sample buffer around the TW arrival time. MRA employs the discrete wavelet transform (DWT) to capture high-frequency voltage patterns, and then the Parseval's energy theorem quantifies these TW characteristics by computing the energy of reconstructed wavelet coefficients. These energy values per decomposed frequency band are the basis for training a random forest classifier that predicts fault location and type. The TWPD is fully implemented and connected to a real DC microgrid in Albuquerque, NM, USA, for validation, and results are shown for field tests verifying the performance under faults.</p>\",\"PeriodicalId\":36490,\"journal\":{\"name\":\"IET Smart Grid\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Smart Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了为实际低压直流微电网设计的行波保护装置(PD)的器件级实现。TWPD故障检测和定位算法在商用数字信号处理器(DSP)板上执行,包括通过DSP板的模数转换器(ADC)在1 MHz频率下进行信号采样。模拟输入卡测量TWPD位置的正极、负极和极对极电压。在使用二阶高通滤波器成功检测故障后,电压数据被归一化,并在TW到达时间周围的128个样本缓冲区上执行多分辨率分析(MRA)。MRA采用离散小波变换(DWT)捕获高频电压模式,然后通过计算重构小波系数的能量,利用Parseval能量定理对高频电压特征进行量化。每个分解频带的能量值是训练随机森林分类器预测故障位置和类型的基础。TWPD已完全实现,并连接到美国新墨西哥州阿尔伯克基的一个实际直流微电网进行验证,并通过现场测试验证了故障下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Travelling wave-based fault detection and location in a real low-voltage DC microgrid

Travelling wave-based fault detection and location in a real low-voltage DC microgrid

This paper discusses a device-level implementation of a travelling wave (TW) protection device (PD) designed for a real low-voltage DC microgrid. The TWPD fault detection and location algorithm is executed on a commercial digital signal processor (DSP) board, involving signal sampling at 1 MHz via the DSP board's analog-to-digital converter (ADC). The analogue input card measures positive pole, negative pole and pole-to-pole voltages at the TWPD location. Upon a successful fault detection using a second-order high-pass filter, the voltage data is normalised and multi-resolution analysis (MRA) is performed on a 128-sample buffer around the TW arrival time. MRA employs the discrete wavelet transform (DWT) to capture high-frequency voltage patterns, and then the Parseval's energy theorem quantifies these TW characteristics by computing the energy of reconstructed wavelet coefficients. These energy values per decomposed frequency band are the basis for training a random forest classifier that predicts fault location and type. The TWPD is fully implemented and connected to a real DC microgrid in Albuquerque, NM, USA, for validation, and results are shown for field tests verifying the performance under faults.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信