波纹管换热器的研究进展:从热学和经济的角度

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Rab Nawaz, Salim Newaz Kazi, Bee Teng Chew, Mohd Nashrul Mohd Zubir, Kaleemullah Shaikh, Samr Ul Hasnain, Wajahat Ahmed Khan
{"title":"波纹管换热器的研究进展:从热学和经济的角度","authors":"Rab Nawaz,&nbsp;Salim Newaz Kazi,&nbsp;Bee Teng Chew,&nbsp;Mohd Nashrul Mohd Zubir,&nbsp;Kaleemullah Shaikh,&nbsp;Samr Ul Hasnain,&nbsp;Wajahat Ahmed Khan","doi":"10.1002/cben.202400023","DOIUrl":null,"url":null,"abstract":"<p>Heat exchangers (HXs) are crucial in transmitting thermal energy in various industrial and domestic applications. Efforts to improve the design of HXs over the years have resulted in heat transfer enhancement with the penalty of pressure loss (∆<i>P</i>). Researchers have implemented various methods to enhance heat transfer. These methods have been categorized based on the need for external power. Active heat transfer methods require external energy, whereas passive heat transfer methods operate without an external power source. Increasing the effective surface area for heat transfer or inducing turbulence through surface alterations can improve passive heat transfer, leading to secondary flow. Of all the surface alterations, the corrugated tubes are particularly significant for enhancing the heat transfer in a turbulent flow, as they result in a reasonable increase in Δ<i>P</i>. Apart from an increase in Δ<i>P</i>, the initial cost of corrugated tube HX is higher than that of simple HX. Therefore, one should not write off the economic analysis of any passive enhancement technique. Various applications increasingly use corrugation in systems like the primary and secondary heat transport systems of nuclear reactors, refrigeration, and other industries. This paper critically reviews thermal investigations for improving heat transfer and a comprehensive economic analysis of corrugated tube HXs.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Review of Corrugation in Tubular Heat Exchangers: Focus on Thermal and Economical Aspects\",\"authors\":\"Rab Nawaz,&nbsp;Salim Newaz Kazi,&nbsp;Bee Teng Chew,&nbsp;Mohd Nashrul Mohd Zubir,&nbsp;Kaleemullah Shaikh,&nbsp;Samr Ul Hasnain,&nbsp;Wajahat Ahmed Khan\",\"doi\":\"10.1002/cben.202400023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heat exchangers (HXs) are crucial in transmitting thermal energy in various industrial and domestic applications. Efforts to improve the design of HXs over the years have resulted in heat transfer enhancement with the penalty of pressure loss (∆<i>P</i>). Researchers have implemented various methods to enhance heat transfer. These methods have been categorized based on the need for external power. Active heat transfer methods require external energy, whereas passive heat transfer methods operate without an external power source. Increasing the effective surface area for heat transfer or inducing turbulence through surface alterations can improve passive heat transfer, leading to secondary flow. Of all the surface alterations, the corrugated tubes are particularly significant for enhancing the heat transfer in a turbulent flow, as they result in a reasonable increase in Δ<i>P</i>. Apart from an increase in Δ<i>P</i>, the initial cost of corrugated tube HX is higher than that of simple HX. Therefore, one should not write off the economic analysis of any passive enhancement technique. Various applications increasingly use corrugation in systems like the primary and secondary heat transport systems of nuclear reactors, refrigeration, and other industries. This paper critically reviews thermal investigations for improving heat transfer and a comprehensive economic analysis of corrugated tube HXs.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202400023\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202400023","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

热交换器(HXs)在各种工业和家庭应用中传输热能至关重要。多年来,改进hx设计的努力导致传热增强,压力损失(∆P)的损失。研究人员已经实施了各种方法来增强传热。这些方法根据对外部电源的需求进行了分类。主动传热方法需要外部能量,而被动传热方法不需要外部电源。增加传热的有效表面积或通过表面变化诱导湍流可以改善被动传热,导致二次流。在所有的表面变化中,波纹管对于增强湍流中的传热特别重要,因为它们导致ΔP的合理增加。除了ΔP的增加外,波纹管HX的初始成本高于简单HX。因此,我们不应该忽略任何被动增强技术的经济分析。各种应用越来越多地在核反应堆、制冷和其他工业的一次和二次热传输系统中使用波纹。本文批判性地回顾了改善传热的热研究和波纹管HXs的综合经济分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical Review of Corrugation in Tubular Heat Exchangers: Focus on Thermal and Economical Aspects

Heat exchangers (HXs) are crucial in transmitting thermal energy in various industrial and domestic applications. Efforts to improve the design of HXs over the years have resulted in heat transfer enhancement with the penalty of pressure loss (∆P). Researchers have implemented various methods to enhance heat transfer. These methods have been categorized based on the need for external power. Active heat transfer methods require external energy, whereas passive heat transfer methods operate without an external power source. Increasing the effective surface area for heat transfer or inducing turbulence through surface alterations can improve passive heat transfer, leading to secondary flow. Of all the surface alterations, the corrugated tubes are particularly significant for enhancing the heat transfer in a turbulent flow, as they result in a reasonable increase in ΔP. Apart from an increase in ΔP, the initial cost of corrugated tube HX is higher than that of simple HX. Therefore, one should not write off the economic analysis of any passive enhancement technique. Various applications increasingly use corrugation in systems like the primary and secondary heat transport systems of nuclear reactors, refrigeration, and other industries. This paper critically reviews thermal investigations for improving heat transfer and a comprehensive economic analysis of corrugated tube HXs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信