地中海海洋洞穴中红色Hildenbrandia的季节动态:对藻类群落和生物多样性的见解

IF 2 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
David Iluz, Sophia Barinova, Danielle Mayer, Efrat Golstein, Elena Cherniavska, Alla Alster, Zvy Dubinsky, Said Abu-Ghosh
{"title":"地中海海洋洞穴中红色Hildenbrandia的季节动态:对藻类群落和生物多样性的见解","authors":"David Iluz,&nbsp;Sophia Barinova,&nbsp;Danielle Mayer,&nbsp;Efrat Golstein,&nbsp;Elena Cherniavska,&nbsp;Alla Alster,&nbsp;Zvy Dubinsky,&nbsp;Said Abu-Ghosh","doi":"10.1007/s00027-025-01163-5","DOIUrl":null,"url":null,"abstract":"<div><p>Marine caves, often overlooked hotspots of biodiversity, provide unique habitats for specialized species. Located on the Mediterranean coast, Rosh HaNiqra is a midlittoral cave renowned for its vibrant epilithic algal community. In the study reported here, we explored the light environment, algal composition, and ecological dynamics of the Rosh HaNiqra cave. Light measurements revealed that illumination in the cave ranged from 0.5 to 2.5% of the sunlight recorded at the mouth of the cave, with variations across seasons and times of day, peaking during summer, and an increase in red wavelengths towards sunset. Biodiversity assessments, including <i>rbc</i>L gene sequencing studies, identified <i>Hildenbrandia rubra</i> (red alga) as the principal alga, together with <i>Blidingia dawsonii</i> (green alga), cyanobacteria, and mosses, forming a “Balcony of Colors”. The cave's conditions were found to be most favorable for <i>H. rubra</i> in the autumn through early winter, when the cave provides a critical refuge where this alga thrives in stable, low-light conditions, demonstrating high photosynthetic efficiency even in reduced light. Our study of algal distribution showed seasonal fluctuations, with peak coverage during warmer months and a decline in winter. This study not only deepens our understanding of Rosh HaNiqra's cave ecosystem but also provides an essential baseline for future ecological and conservation research in marine caves.</p></div>","PeriodicalId":55489,"journal":{"name":"Aquatic Sciences","volume":"87 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00027-025-01163-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Seasonal dynamics of Hildenbrandia rubra in a Mediterranean marine cave: insights into the algal community and biodiversity\",\"authors\":\"David Iluz,&nbsp;Sophia Barinova,&nbsp;Danielle Mayer,&nbsp;Efrat Golstein,&nbsp;Elena Cherniavska,&nbsp;Alla Alster,&nbsp;Zvy Dubinsky,&nbsp;Said Abu-Ghosh\",\"doi\":\"10.1007/s00027-025-01163-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Marine caves, often overlooked hotspots of biodiversity, provide unique habitats for specialized species. Located on the Mediterranean coast, Rosh HaNiqra is a midlittoral cave renowned for its vibrant epilithic algal community. In the study reported here, we explored the light environment, algal composition, and ecological dynamics of the Rosh HaNiqra cave. Light measurements revealed that illumination in the cave ranged from 0.5 to 2.5% of the sunlight recorded at the mouth of the cave, with variations across seasons and times of day, peaking during summer, and an increase in red wavelengths towards sunset. Biodiversity assessments, including <i>rbc</i>L gene sequencing studies, identified <i>Hildenbrandia rubra</i> (red alga) as the principal alga, together with <i>Blidingia dawsonii</i> (green alga), cyanobacteria, and mosses, forming a “Balcony of Colors”. The cave's conditions were found to be most favorable for <i>H. rubra</i> in the autumn through early winter, when the cave provides a critical refuge where this alga thrives in stable, low-light conditions, demonstrating high photosynthetic efficiency even in reduced light. Our study of algal distribution showed seasonal fluctuations, with peak coverage during warmer months and a decline in winter. This study not only deepens our understanding of Rosh HaNiqra's cave ecosystem but also provides an essential baseline for future ecological and conservation research in marine caves.</p></div>\",\"PeriodicalId\":55489,\"journal\":{\"name\":\"Aquatic Sciences\",\"volume\":\"87 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00027-025-01163-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00027-025-01163-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00027-025-01163-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海洋洞穴,经常被忽视的生物多样性热点,为特殊物种提供了独特的栖息地。Rosh HaNiqra位于地中海沿岸,是一个以其充满活力的巨石藻群落而闻名的中海岸洞穴。在本文中,我们对Rosh HaNiqra洞穴的光环境、藻类组成和生态动态进行了研究。光线测量显示,洞穴内的照度为洞口记录的阳光的0.5%至2.5%,随季节和一天中的时间而变化,夏季达到峰值,日落时红色波长增加。生物多样性评估,包括rbcL基因测序研究,确定Hildenbrandia rubra(红藻)是主要的藻类,与Blidingia dawsonii(绿藻)、蓝藻和苔藓一起,形成了一个“颜色阳台”。研究发现,洞穴的条件在秋天到初冬期间最有利于红藻生长,此时洞穴为这种藻类提供了一个关键的避难所,在稳定、低光的条件下,这种藻类在这里茁壮成长,即使在光线较弱的情况下,也表现出很高的光合效率。我们对藻类分布的研究显示出季节性波动,在温暖的月份覆盖率最高,在冬季下降。该研究不仅加深了我们对Rosh HaNiqra洞穴生态系统的认识,而且为未来海洋洞穴生态和保护研究提供了重要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal dynamics of Hildenbrandia rubra in a Mediterranean marine cave: insights into the algal community and biodiversity

Marine caves, often overlooked hotspots of biodiversity, provide unique habitats for specialized species. Located on the Mediterranean coast, Rosh HaNiqra is a midlittoral cave renowned for its vibrant epilithic algal community. In the study reported here, we explored the light environment, algal composition, and ecological dynamics of the Rosh HaNiqra cave. Light measurements revealed that illumination in the cave ranged from 0.5 to 2.5% of the sunlight recorded at the mouth of the cave, with variations across seasons and times of day, peaking during summer, and an increase in red wavelengths towards sunset. Biodiversity assessments, including rbcL gene sequencing studies, identified Hildenbrandia rubra (red alga) as the principal alga, together with Blidingia dawsonii (green alga), cyanobacteria, and mosses, forming a “Balcony of Colors”. The cave's conditions were found to be most favorable for H. rubra in the autumn through early winter, when the cave provides a critical refuge where this alga thrives in stable, low-light conditions, demonstrating high photosynthetic efficiency even in reduced light. Our study of algal distribution showed seasonal fluctuations, with peak coverage during warmer months and a decline in winter. This study not only deepens our understanding of Rosh HaNiqra's cave ecosystem but also provides an essential baseline for future ecological and conservation research in marine caves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Sciences
Aquatic Sciences 环境科学-海洋与淡水生物学
CiteScore
3.90
自引率
4.20%
发文量
60
审稿时长
1 months
期刊介绍: Aquatic Sciences – Research Across Boundaries publishes original research, overviews, and reviews dealing with aquatic systems (both freshwater and marine systems) and their boundaries, including the impact of human activities on these systems. The coverage ranges from molecular-level mechanistic studies to investigations at the whole ecosystem scale. Aquatic Sciences publishes articles presenting research across disciplinary and environmental boundaries, including studies examining interactions among geological, microbial, biological, chemical, physical, hydrological, and societal processes, as well as studies assessing land-water, air-water, benthic-pelagic, river-ocean, lentic-lotic, and groundwater-surface water interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信