{"title":"利用两个反传播平面波控制和分选非均质介质核壳纳米粒子","authors":"Ricardo Martín Abraham-Ekeroth, Marcelo Lester, Dani Torrent","doi":"10.1140/epjp/s13360-025-06053-1","DOIUrl":null,"url":null,"abstract":"<div><p>Many typical nanoscale structures consist of dielectric nanoparticles with an inevitable oxide-generated coating around them. Depending on the fabrication techniques and the intended purposes, these coatings may not be homogeneous, and their distortion can cause advantages or disadvantages in the applications of such systems. Based on finite element simulations, inhomogeneous core–shell nanoparticle systems are numerically studied when illuminated with two counter-propagating plane waves in the optical range. It is found that the electromagnetic field distortions caused by the inhomogeneous system under Mie resonance conditions allow the system to exhibit controllable one-directional impulsion and rotation, which mainly depends on the offset between the core and shell. The overall geometry and composition of the system also dictate the type of resonance being excited. Overall, this “photonic thruster” effect consisting of an accelerating and spinning projectile would provide stability to particle movement and additionally establish a method to distinguish inhomogeneous from homogeneous particles. The method can be scaled to a wide range of nanoscale dielectric particles. Thus, the results are useful for detecting defects in nanosystems with a simple concept and may open avenues for improving nanoparticle synthesis methods.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-025-06053-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Control and sorting of inhomogeneous dielectric core–shell nanoparticles using two counter-propagating plane waves\",\"authors\":\"Ricardo Martín Abraham-Ekeroth, Marcelo Lester, Dani Torrent\",\"doi\":\"10.1140/epjp/s13360-025-06053-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many typical nanoscale structures consist of dielectric nanoparticles with an inevitable oxide-generated coating around them. Depending on the fabrication techniques and the intended purposes, these coatings may not be homogeneous, and their distortion can cause advantages or disadvantages in the applications of such systems. Based on finite element simulations, inhomogeneous core–shell nanoparticle systems are numerically studied when illuminated with two counter-propagating plane waves in the optical range. It is found that the electromagnetic field distortions caused by the inhomogeneous system under Mie resonance conditions allow the system to exhibit controllable one-directional impulsion and rotation, which mainly depends on the offset between the core and shell. The overall geometry and composition of the system also dictate the type of resonance being excited. Overall, this “photonic thruster” effect consisting of an accelerating and spinning projectile would provide stability to particle movement and additionally establish a method to distinguish inhomogeneous from homogeneous particles. The method can be scaled to a wide range of nanoscale dielectric particles. Thus, the results are useful for detecting defects in nanosystems with a simple concept and may open avenues for improving nanoparticle synthesis methods.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjp/s13360-025-06053-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06053-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06053-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Control and sorting of inhomogeneous dielectric core–shell nanoparticles using two counter-propagating plane waves
Many typical nanoscale structures consist of dielectric nanoparticles with an inevitable oxide-generated coating around them. Depending on the fabrication techniques and the intended purposes, these coatings may not be homogeneous, and their distortion can cause advantages or disadvantages in the applications of such systems. Based on finite element simulations, inhomogeneous core–shell nanoparticle systems are numerically studied when illuminated with two counter-propagating plane waves in the optical range. It is found that the electromagnetic field distortions caused by the inhomogeneous system under Mie resonance conditions allow the system to exhibit controllable one-directional impulsion and rotation, which mainly depends on the offset between the core and shell. The overall geometry and composition of the system also dictate the type of resonance being excited. Overall, this “photonic thruster” effect consisting of an accelerating and spinning projectile would provide stability to particle movement and additionally establish a method to distinguish inhomogeneous from homogeneous particles. The method can be scaled to a wide range of nanoscale dielectric particles. Thus, the results are useful for detecting defects in nanosystems with a simple concept and may open avenues for improving nanoparticle synthesis methods.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.