Florian Konert, Jonathan Nietzke, Tomás Freitas, Michael Rhode, Oded Sobol, Thomas Böllinghaus
{"title":"利用空心试样技术研究 X65 管道纵向焊缝的抗气态氢性能","authors":"Florian Konert, Jonathan Nietzke, Tomás Freitas, Michael Rhode, Oded Sobol, Thomas Böllinghaus","doi":"10.1007/s40194-025-01953-3","DOIUrl":null,"url":null,"abstract":"<div><p>The constantly increasing demand for renewable energy sources leads to the necessity of transporting large amounts of hydrogen. Since pipelines enable a cost-effective way for the distribution of gaseous hydrogen, the interaction of hydrogen and the pipeline materials must be carefully investigated as hydrogen can cause a degradation of the mechanical properties under certain conditions. Especially welds, which are assumed to be more susceptible to the degradation enhanced by hydrogen, are of great interest. The aim of this study is to investigate the effect of gaseous hydrogen on the mechanical properties of an X65 pipeline, and the longitudinal submerged arc welding (SAW) welded joint. The tests are conducted using the hollow specimen technique on two types of specimens: one extracted from the base material (BM) and the other extracted as a cross-weld (CW) specimen consisting of BM and weld seam. The specimens are charged in situ under a pressure of 60 bar and tested using slow strain rate (SSR) tensile tests with a nominal strain rate of 10<sup>−5</sup> s<sup>−1</sup>. The properties obtained of specimens tested in hydrogen atmosphere are compared to the properties of comparable specimen in inert argon atmosphere as a reference. The performed tests showed a decrease of the reduction of area (RA) from 72% in inert atmosphere to 52% in hydrogen atmosphere for the CW specimen and a decrease from 73% in inert atmosphere to 51% for the BM. Metallographic analyses showed the crack initiation between fine-grained heat-affected zone (FGHAZ) and BM for the specimens tested in hydrogen atmosphere as well as for the reference specimens. This leads to the conclusion that the location of the crack initiation does not change due to the presence of gaseous hydrogen.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 3","pages":"861 - 870"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-025-01953-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of resistance to gaseous hydrogen of a longitudinal weld seam in a X65 pipeline using the hollow specimen technique\",\"authors\":\"Florian Konert, Jonathan Nietzke, Tomás Freitas, Michael Rhode, Oded Sobol, Thomas Böllinghaus\",\"doi\":\"10.1007/s40194-025-01953-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The constantly increasing demand for renewable energy sources leads to the necessity of transporting large amounts of hydrogen. Since pipelines enable a cost-effective way for the distribution of gaseous hydrogen, the interaction of hydrogen and the pipeline materials must be carefully investigated as hydrogen can cause a degradation of the mechanical properties under certain conditions. Especially welds, which are assumed to be more susceptible to the degradation enhanced by hydrogen, are of great interest. The aim of this study is to investigate the effect of gaseous hydrogen on the mechanical properties of an X65 pipeline, and the longitudinal submerged arc welding (SAW) welded joint. The tests are conducted using the hollow specimen technique on two types of specimens: one extracted from the base material (BM) and the other extracted as a cross-weld (CW) specimen consisting of BM and weld seam. The specimens are charged in situ under a pressure of 60 bar and tested using slow strain rate (SSR) tensile tests with a nominal strain rate of 10<sup>−5</sup> s<sup>−1</sup>. The properties obtained of specimens tested in hydrogen atmosphere are compared to the properties of comparable specimen in inert argon atmosphere as a reference. The performed tests showed a decrease of the reduction of area (RA) from 72% in inert atmosphere to 52% in hydrogen atmosphere for the CW specimen and a decrease from 73% in inert atmosphere to 51% for the BM. Metallographic analyses showed the crack initiation between fine-grained heat-affected zone (FGHAZ) and BM for the specimens tested in hydrogen atmosphere as well as for the reference specimens. This leads to the conclusion that the location of the crack initiation does not change due to the presence of gaseous hydrogen.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"69 3\",\"pages\":\"861 - 870\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40194-025-01953-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-025-01953-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-025-01953-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Investigation of resistance to gaseous hydrogen of a longitudinal weld seam in a X65 pipeline using the hollow specimen technique
The constantly increasing demand for renewable energy sources leads to the necessity of transporting large amounts of hydrogen. Since pipelines enable a cost-effective way for the distribution of gaseous hydrogen, the interaction of hydrogen and the pipeline materials must be carefully investigated as hydrogen can cause a degradation of the mechanical properties under certain conditions. Especially welds, which are assumed to be more susceptible to the degradation enhanced by hydrogen, are of great interest. The aim of this study is to investigate the effect of gaseous hydrogen on the mechanical properties of an X65 pipeline, and the longitudinal submerged arc welding (SAW) welded joint. The tests are conducted using the hollow specimen technique on two types of specimens: one extracted from the base material (BM) and the other extracted as a cross-weld (CW) specimen consisting of BM and weld seam. The specimens are charged in situ under a pressure of 60 bar and tested using slow strain rate (SSR) tensile tests with a nominal strain rate of 10−5 s−1. The properties obtained of specimens tested in hydrogen atmosphere are compared to the properties of comparable specimen in inert argon atmosphere as a reference. The performed tests showed a decrease of the reduction of area (RA) from 72% in inert atmosphere to 52% in hydrogen atmosphere for the CW specimen and a decrease from 73% in inert atmosphere to 51% for the BM. Metallographic analyses showed the crack initiation between fine-grained heat-affected zone (FGHAZ) and BM for the specimens tested in hydrogen atmosphere as well as for the reference specimens. This leads to the conclusion that the location of the crack initiation does not change due to the presence of gaseous hydrogen.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.