Robinson Aguirre Ocampo, Julian Arias-Velandia, Julian A. Lenis, Alejandro A. Zuleta Gil, Sindy Bello, Esteban Correa, Carlos Arrieta, Francisco J. Bolívar, Félix Echeverria Echeverria
{"title":"微波辅助合成用于储氢的MgH2纳米颗粒","authors":"Robinson Aguirre Ocampo, Julian Arias-Velandia, Julian A. Lenis, Alejandro A. Zuleta Gil, Sindy Bello, Esteban Correa, Carlos Arrieta, Francisco J. Bolívar, Félix Echeverria Echeverria","doi":"10.1007/s11051-025-06217-1","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium’s high storage capacity, with a theoretical value of about 7.6 wt.%, makes it a viable candidate for hydrogen storage. However, slow kinetics and strong thermodynamic stability lead to a rather high desorption temperature, usually above 350 °C. It has been demonstrated that nanosizing magnesium-based materials is a successful strategy for simultaneously improving the kinetic and thermodynamic characteristics of MgH<sub>2</sub> during hydrogen absorption and desorption. MgH<sub>2</sub> nanoparticles were obtained by microwave assisted synthesis. To the best of our knowledge, synthesis of MgH<sub>2</sub> nanoparticles by this method has not been reported. It was possible to produce MgH<sub>2</sub> nanoparticles smaller than 20 nm. MgO and Mg(OH)<sub>2</sub> were also present in the produced nanoparticles, although these compounds may enhance the processes involved in the release and absorption of hydrogen.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11051-025-06217-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Microwave-assisted synthesis of MgH2 nanoparticles for hydrogen storage applications\",\"authors\":\"Robinson Aguirre Ocampo, Julian Arias-Velandia, Julian A. Lenis, Alejandro A. Zuleta Gil, Sindy Bello, Esteban Correa, Carlos Arrieta, Francisco J. Bolívar, Félix Echeverria Echeverria\",\"doi\":\"10.1007/s11051-025-06217-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnesium’s high storage capacity, with a theoretical value of about 7.6 wt.%, makes it a viable candidate for hydrogen storage. However, slow kinetics and strong thermodynamic stability lead to a rather high desorption temperature, usually above 350 °C. It has been demonstrated that nanosizing magnesium-based materials is a successful strategy for simultaneously improving the kinetic and thermodynamic characteristics of MgH<sub>2</sub> during hydrogen absorption and desorption. MgH<sub>2</sub> nanoparticles were obtained by microwave assisted synthesis. To the best of our knowledge, synthesis of MgH<sub>2</sub> nanoparticles by this method has not been reported. It was possible to produce MgH<sub>2</sub> nanoparticles smaller than 20 nm. MgO and Mg(OH)<sub>2</sub> were also present in the produced nanoparticles, although these compounds may enhance the processes involved in the release and absorption of hydrogen.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11051-025-06217-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-025-06217-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06217-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microwave-assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
Magnesium’s high storage capacity, with a theoretical value of about 7.6 wt.%, makes it a viable candidate for hydrogen storage. However, slow kinetics and strong thermodynamic stability lead to a rather high desorption temperature, usually above 350 °C. It has been demonstrated that nanosizing magnesium-based materials is a successful strategy for simultaneously improving the kinetic and thermodynamic characteristics of MgH2 during hydrogen absorption and desorption. MgH2 nanoparticles were obtained by microwave assisted synthesis. To the best of our knowledge, synthesis of MgH2 nanoparticles by this method has not been reported. It was possible to produce MgH2 nanoparticles smaller than 20 nm. MgO and Mg(OH)2 were also present in the produced nanoparticles, although these compounds may enhance the processes involved in the release and absorption of hydrogen.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.