高维无消失条件下平稳Navier-Stokes方程的Liouville型定理

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Huiting Ding
{"title":"高维无消失条件下平稳Navier-Stokes方程的Liouville型定理","authors":"Huiting Ding","doi":"10.1007/s00021-025-00925-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Liouville theorem for smooth solutions with finite Dirichlet integrals and uniform vanishing conditions to high-dimension stationary Navier–Stokes equations was established as reported by Galdi (An introduction to the mathematical theory of the Navier–Stokes equations: Steady-state problems, Springer, New York, 2011). In this paper, we mainly concern with the Liouville type problem of weak solutions only with finite Dirichlet integral to the stationary Navier–Stokes equations on <span>\\(\\mathbb {R}^d\\)</span> with <span>\\(d\\ge 5\\)</span>. We first establish a Liouville type theorem under some restrictions on the high-frequency part tending to infinity of velocity fields. Then, we show the uniqueness of weak solutions to the stationary fractional Navier–Stokes equations with finite critical Dirichlet integral by establishing another Liouville type theorem.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville Type Theorems for the Stationary Navier–Stokes Equations in High-Dimension Without Vanishing Condition\",\"authors\":\"Huiting Ding\",\"doi\":\"10.1007/s00021-025-00925-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Liouville theorem for smooth solutions with finite Dirichlet integrals and uniform vanishing conditions to high-dimension stationary Navier–Stokes equations was established as reported by Galdi (An introduction to the mathematical theory of the Navier–Stokes equations: Steady-state problems, Springer, New York, 2011). In this paper, we mainly concern with the Liouville type problem of weak solutions only with finite Dirichlet integral to the stationary Navier–Stokes equations on <span>\\\\(\\\\mathbb {R}^d\\\\)</span> with <span>\\\\(d\\\\ge 5\\\\)</span>. We first establish a Liouville type theorem under some restrictions on the high-frequency part tending to infinity of velocity fields. Then, we show the uniqueness of weak solutions to the stationary fractional Navier–Stokes equations with finite critical Dirichlet integral by establishing another Liouville type theorem.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-025-00925-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00925-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

高维平稳Navier-Stokes方程具有有限Dirichlet积分和一致消失条件的光滑解的Liouville定理是由Galdi报道的(a introduction to The mathematical theory of The Navier-Stokes equations: Steady-state problems,施普林格,New York, 2011)。本文主要研究上的平稳Navier-Stokes方程具有有限Dirichlet积分的弱解的Liouville型问题 \(\mathbb {R}^d\) 有 \(d\ge 5\)。首先建立了速度场高频部分趋于无穷大的某些限制条件下的Liouville型定理。然后,通过建立另一个Liouville型定理,证明了具有有限临界Dirichlet积分的平稳分数阶Navier-Stokes方程弱解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville Type Theorems for the Stationary Navier–Stokes Equations in High-Dimension Without Vanishing Condition

The Liouville theorem for smooth solutions with finite Dirichlet integrals and uniform vanishing conditions to high-dimension stationary Navier–Stokes equations was established as reported by Galdi (An introduction to the mathematical theory of the Navier–Stokes equations: Steady-state problems, Springer, New York, 2011). In this paper, we mainly concern with the Liouville type problem of weak solutions only with finite Dirichlet integral to the stationary Navier–Stokes equations on \(\mathbb {R}^d\) with \(d\ge 5\). We first establish a Liouville type theorem under some restrictions on the high-frequency part tending to infinity of velocity fields. Then, we show the uniqueness of weak solutions to the stationary fractional Navier–Stokes equations with finite critical Dirichlet integral by establishing another Liouville type theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信