{"title":"孤立卡尔曼滤波:理论与解耦估计器设计","authors":"Roland Jung, Lukas Luft, Stephan Weiss","doi":"10.1007/s10514-025-10191-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a state decoupling strategy for Kalman filtering problems, when the dynamics of individual estimates are decoupled and their outputs are sparsely coupled. The algorithm is termed Isolated Kalman Filtering (IsoKF) and exploits the sparsity in the output coupling by applying approximations that mitigate the need for non-involved estimates. We prove that the approximations made during the isolated coupling of estimates are based on an implicit maximum determinant completion of the incomplete a priori covariance matrix. The steady state behavior is studied on eleven different observation graphs and a buffering scheme to support delayed (i.e. out-of-order) measurements is proposed. We discussed handling of delayed measurements in both, an optimal or a suboptimal way. The credibility of the isolated estimates are evaluated on a linear and nonlinear toy example in Monte Carlo simulations. The presented paradigm is made available online to the community within a generic C++ estimation framework supporting both, modular sensor fusion and collaborative state estimation.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"49 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-025-10191-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Isolated Kalman filtering: theory and decoupled estimator design\",\"authors\":\"Roland Jung, Lukas Luft, Stephan Weiss\",\"doi\":\"10.1007/s10514-025-10191-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose a state decoupling strategy for Kalman filtering problems, when the dynamics of individual estimates are decoupled and their outputs are sparsely coupled. The algorithm is termed Isolated Kalman Filtering (IsoKF) and exploits the sparsity in the output coupling by applying approximations that mitigate the need for non-involved estimates. We prove that the approximations made during the isolated coupling of estimates are based on an implicit maximum determinant completion of the incomplete a priori covariance matrix. The steady state behavior is studied on eleven different observation graphs and a buffering scheme to support delayed (i.e. out-of-order) measurements is proposed. We discussed handling of delayed measurements in both, an optimal or a suboptimal way. The credibility of the isolated estimates are evaluated on a linear and nonlinear toy example in Monte Carlo simulations. The presented paradigm is made available online to the community within a generic C++ estimation framework supporting both, modular sensor fusion and collaborative state estimation.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-025-10191-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-025-10191-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-025-10191-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Isolated Kalman filtering: theory and decoupled estimator design
In this paper, we propose a state decoupling strategy for Kalman filtering problems, when the dynamics of individual estimates are decoupled and their outputs are sparsely coupled. The algorithm is termed Isolated Kalman Filtering (IsoKF) and exploits the sparsity in the output coupling by applying approximations that mitigate the need for non-involved estimates. We prove that the approximations made during the isolated coupling of estimates are based on an implicit maximum determinant completion of the incomplete a priori covariance matrix. The steady state behavior is studied on eleven different observation graphs and a buffering scheme to support delayed (i.e. out-of-order) measurements is proposed. We discussed handling of delayed measurements in both, an optimal or a suboptimal way. The credibility of the isolated estimates are evaluated on a linear and nonlinear toy example in Monte Carlo simulations. The presented paradigm is made available online to the community within a generic C++ estimation framework supporting both, modular sensor fusion and collaborative state estimation.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.