含高密度颗粒的石蜡基复合材料:铅、铋及其氧化物作为γ射线屏蔽材料的实验研究

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jolanta Sobczak, Krzysztof Cioch, Gaweł Żyła
{"title":"含高密度颗粒的石蜡基复合材料:铅、铋及其氧化物作为γ射线屏蔽材料的实验研究","authors":"Jolanta Sobczak,&nbsp;Krzysztof Cioch,&nbsp;Gaweł Żyła","doi":"10.1186/s11671-025-04203-z","DOIUrl":null,"url":null,"abstract":"<div><p>Shielding nano- and microcomposites have emerged as a promising solution in the constantly growing requirements and expectations in the field of radiological protection. The majority of gamma and X-ray shielding nanocomposites are based on polymers due to lightweight, low cost and flexibility as the inviting features in comparison to traditional lead shields. Taking this into consideration, the following study proposes gamma-ray shielding composites characterized by their susceptibility to shape change using the heat and manual pressure. The paraffin-based composites were filled with pure lead and bismuth particles (Bi and Pb, in one mass fraction: 10 wt%) as well as it’s oxides: bismuth (III) oxide (Bi<sub>2</sub>O<sub>3</sub>) particles and lead (II,IV) oxide particles (Pb<sub>3</sub>O<sub>4</sub>) (manufactured in two concentrations: 10 and 50 wt%). Based on experimental studies utilizing <sup>60</sup>Co the half-value layers were calculated approximately 13–14 cm and ca. 9 cm for 10 wt% and 50 wt% filler concentration, respectively. The relatively quick and straightforward manufacturing process, utilizing two commercially available components, allows for the production of a gamma-ray shielding composite featuring a variety of shape choices, facilitating its use in areas where acquiring complex shields remains problematic, or the desired shape development requires repetition of the production process, changes in some of its stages and modification of the composition.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04203-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Paraffin-based composites containing high density particles: lead and bismuth and its’ oxides as γ-ray shielding materials: an experimental study\",\"authors\":\"Jolanta Sobczak,&nbsp;Krzysztof Cioch,&nbsp;Gaweł Żyła\",\"doi\":\"10.1186/s11671-025-04203-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shielding nano- and microcomposites have emerged as a promising solution in the constantly growing requirements and expectations in the field of radiological protection. The majority of gamma and X-ray shielding nanocomposites are based on polymers due to lightweight, low cost and flexibility as the inviting features in comparison to traditional lead shields. Taking this into consideration, the following study proposes gamma-ray shielding composites characterized by their susceptibility to shape change using the heat and manual pressure. The paraffin-based composites were filled with pure lead and bismuth particles (Bi and Pb, in one mass fraction: 10 wt%) as well as it’s oxides: bismuth (III) oxide (Bi<sub>2</sub>O<sub>3</sub>) particles and lead (II,IV) oxide particles (Pb<sub>3</sub>O<sub>4</sub>) (manufactured in two concentrations: 10 and 50 wt%). Based on experimental studies utilizing <sup>60</sup>Co the half-value layers were calculated approximately 13–14 cm and ca. 9 cm for 10 wt% and 50 wt% filler concentration, respectively. The relatively quick and straightforward manufacturing process, utilizing two commercially available components, allows for the production of a gamma-ray shielding composite featuring a variety of shape choices, facilitating its use in areas where acquiring complex shields remains problematic, or the desired shape development requires repetition of the production process, changes in some of its stages and modification of the composition.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04203-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04203-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04203-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在辐射防护领域日益增长的需求和期望中,屏蔽纳米和微复合材料已成为一种很有前途的解决方案。大多数伽马和x射线屏蔽纳米复合材料都是基于聚合物的,因为与传统的铅屏蔽相比,它们具有重量轻、成本低和灵活性等优点。考虑到这一点,下面的研究提出了伽马射线屏蔽复合材料,其特点是在加热和手动压力下易发生形状变化。石蜡基复合材料填充了纯铅和铋颗粒(Bi和Pb,质量分数为10 wt%)及其氧化物:铋(III)氧化物(Bi2O3)颗粒和铅(II,IV)氧化物颗粒(Pb3O4)(两种浓度:10和50 wt%)。根据使用60Co的实验研究,在填料浓度为10 wt%和50 wt%时,计算出的半值层分别约为13-14厘米和9厘米。相对快速和直接的制造过程,利用两种市售组件,允许生产具有多种形状选择的伽马射线屏蔽复合材料,促进其在获取复杂屏蔽仍然存在问题的领域的使用,或者所需形状的开发需要重复生产过程,改变其某些阶段和修改成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paraffin-based composites containing high density particles: lead and bismuth and its’ oxides as γ-ray shielding materials: an experimental study

Shielding nano- and microcomposites have emerged as a promising solution in the constantly growing requirements and expectations in the field of radiological protection. The majority of gamma and X-ray shielding nanocomposites are based on polymers due to lightweight, low cost and flexibility as the inviting features in comparison to traditional lead shields. Taking this into consideration, the following study proposes gamma-ray shielding composites characterized by their susceptibility to shape change using the heat and manual pressure. The paraffin-based composites were filled with pure lead and bismuth particles (Bi and Pb, in one mass fraction: 10 wt%) as well as it’s oxides: bismuth (III) oxide (Bi2O3) particles and lead (II,IV) oxide particles (Pb3O4) (manufactured in two concentrations: 10 and 50 wt%). Based on experimental studies utilizing 60Co the half-value layers were calculated approximately 13–14 cm and ca. 9 cm for 10 wt% and 50 wt% filler concentration, respectively. The relatively quick and straightforward manufacturing process, utilizing two commercially available components, allows for the production of a gamma-ray shielding composite featuring a variety of shape choices, facilitating its use in areas where acquiring complex shields remains problematic, or the desired shape development requires repetition of the production process, changes in some of its stages and modification of the composition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信