Ozkan Aksakal , Hatice Dane , Cihan Gur , Turgay Sisman
{"title":"四康唑和戊康唑对大水蚤的慢性毒性:生长、繁殖和基因表达变化的观察","authors":"Ozkan Aksakal , Hatice Dane , Cihan Gur , Turgay Sisman","doi":"10.1016/j.scitotenv.2025.178774","DOIUrl":null,"url":null,"abstract":"<div><div>Tetraconazole and penconazole are widely used fungicides belonging to the conazole family. Due to the increasing use of these fungicides, their concentrations in aquatic environments are increasing and imply a serious threat to aquatic organisms. However, no studies have investigated the effects of tetraconazole and penconazole on aquatic invertebrates. This study examined for the first time, changes in growth, reproduction, and survival rate as well as changes in the expression of genes related to detoxification (HR96, P-GP, CYP360A8, GST) and reproduction (CUT, CYP314, DMRT, VTG) in <em>D. magna</em> after exposed to different tetraconazole and penconazole concentrations for 21 days. The 48-h EC<sub>50</sub> value was 12.35 μg/L for tetraconazole and 326.8 μg/L for penconazole. Chronic toxicity results showed that exposure to varying concentrations of tetraconazole and penconazole decreased body length, total offspring per female, molting frequency, heartbeat rate per minute, and survival rate, and increased day to the first brood in <em>D. magna</em>. The expression of genes related to detoxification and reproduction changed depending on the fungicide type and concentration. In general, transcription of genes related to detoxification was more affected by fungicides. The results revealed that tetraconazole and penconazole caused toxicity in <em>D. magna</em> by inhibiting growth and reproduction and affecting detoxification pathways similarly.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"967 ","pages":"Article 178774"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic toxicity of tetraconazole and penconazole to Daphnia magna: Insights of growth, reproduction and gene expression changes\",\"authors\":\"Ozkan Aksakal , Hatice Dane , Cihan Gur , Turgay Sisman\",\"doi\":\"10.1016/j.scitotenv.2025.178774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tetraconazole and penconazole are widely used fungicides belonging to the conazole family. Due to the increasing use of these fungicides, their concentrations in aquatic environments are increasing and imply a serious threat to aquatic organisms. However, no studies have investigated the effects of tetraconazole and penconazole on aquatic invertebrates. This study examined for the first time, changes in growth, reproduction, and survival rate as well as changes in the expression of genes related to detoxification (HR96, P-GP, CYP360A8, GST) and reproduction (CUT, CYP314, DMRT, VTG) in <em>D. magna</em> after exposed to different tetraconazole and penconazole concentrations for 21 days. The 48-h EC<sub>50</sub> value was 12.35 μg/L for tetraconazole and 326.8 μg/L for penconazole. Chronic toxicity results showed that exposure to varying concentrations of tetraconazole and penconazole decreased body length, total offspring per female, molting frequency, heartbeat rate per minute, and survival rate, and increased day to the first brood in <em>D. magna</em>. The expression of genes related to detoxification and reproduction changed depending on the fungicide type and concentration. In general, transcription of genes related to detoxification was more affected by fungicides. The results revealed that tetraconazole and penconazole caused toxicity in <em>D. magna</em> by inhibiting growth and reproduction and affecting detoxification pathways similarly.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"967 \",\"pages\":\"Article 178774\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725004097\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725004097","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Chronic toxicity of tetraconazole and penconazole to Daphnia magna: Insights of growth, reproduction and gene expression changes
Tetraconazole and penconazole are widely used fungicides belonging to the conazole family. Due to the increasing use of these fungicides, their concentrations in aquatic environments are increasing and imply a serious threat to aquatic organisms. However, no studies have investigated the effects of tetraconazole and penconazole on aquatic invertebrates. This study examined for the first time, changes in growth, reproduction, and survival rate as well as changes in the expression of genes related to detoxification (HR96, P-GP, CYP360A8, GST) and reproduction (CUT, CYP314, DMRT, VTG) in D. magna after exposed to different tetraconazole and penconazole concentrations for 21 days. The 48-h EC50 value was 12.35 μg/L for tetraconazole and 326.8 μg/L for penconazole. Chronic toxicity results showed that exposure to varying concentrations of tetraconazole and penconazole decreased body length, total offspring per female, molting frequency, heartbeat rate per minute, and survival rate, and increased day to the first brood in D. magna. The expression of genes related to detoxification and reproduction changed depending on the fungicide type and concentration. In general, transcription of genes related to detoxification was more affected by fungicides. The results revealed that tetraconazole and penconazole caused toxicity in D. magna by inhibiting growth and reproduction and affecting detoxification pathways similarly.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.