通过专利分析,确定煤层气开采的潜在技术机会

IF 3.3 2区 社会学 Q2 ENVIRONMENTAL SCIENCES
Jian Feng , Zhenfeng Liu
{"title":"通过专利分析,确定煤层气开采的潜在技术机会","authors":"Jian Feng ,&nbsp;Zhenfeng Liu","doi":"10.1016/j.sftr.2025.100488","DOIUrl":null,"url":null,"abstract":"<div><div>To find the unexplored technology opportunities and indicate the potential breakthroughs for the technology development of coal bed methane (CBM) exploitation, this study proposes an automated identification approach by combining the patent classification codes and generative topographic mapping (GTM) based on patent analysis. The experimental findings reveal that the proposed model outperforms nine traditional link prediction benchmarks in identifying 15 vacant technologies. This automated identification approach not only saves R&amp;D time to discover vacant technologies for CBM exploitation but also generates actionable policy insights for governments and enterprises to optimize strategic resource allocation and foster cross-sector innovation.</div></div>","PeriodicalId":34478,"journal":{"name":"Sustainable Futures","volume":"9 ","pages":"Article 100488"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying potential technology opportunities for coal bed methane exploitation via patent analysis\",\"authors\":\"Jian Feng ,&nbsp;Zhenfeng Liu\",\"doi\":\"10.1016/j.sftr.2025.100488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To find the unexplored technology opportunities and indicate the potential breakthroughs for the technology development of coal bed methane (CBM) exploitation, this study proposes an automated identification approach by combining the patent classification codes and generative topographic mapping (GTM) based on patent analysis. The experimental findings reveal that the proposed model outperforms nine traditional link prediction benchmarks in identifying 15 vacant technologies. This automated identification approach not only saves R&amp;D time to discover vacant technologies for CBM exploitation but also generates actionable policy insights for governments and enterprises to optimize strategic resource allocation and foster cross-sector innovation.</div></div>\",\"PeriodicalId\":34478,\"journal\":{\"name\":\"Sustainable Futures\",\"volume\":\"9 \",\"pages\":\"Article 100488\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Futures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666188825000589\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Futures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666188825000589","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了发现煤层气开采技术发展的未开发技术机会和潜在突破,本研究提出了一种基于专利分析的专利分类代码与生成式地形测绘(GTM)相结合的自动识别方法。实验结果表明,该模型在识别15种空置技术方面优于9种传统的链路预测基准。这种自动识别方法不仅节省了研发时间来发现煤层气开发的空白技术,而且为政府和企业优化战略资源配置和促进跨部门创新提供了可操作的政策见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying potential technology opportunities for coal bed methane exploitation via patent analysis
To find the unexplored technology opportunities and indicate the potential breakthroughs for the technology development of coal bed methane (CBM) exploitation, this study proposes an automated identification approach by combining the patent classification codes and generative topographic mapping (GTM) based on patent analysis. The experimental findings reveal that the proposed model outperforms nine traditional link prediction benchmarks in identifying 15 vacant technologies. This automated identification approach not only saves R&D time to discover vacant technologies for CBM exploitation but also generates actionable policy insights for governments and enterprises to optimize strategic resource allocation and foster cross-sector innovation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Futures
Sustainable Futures Social Sciences-Sociology and Political Science
CiteScore
9.30
自引率
1.80%
发文量
34
审稿时长
71 days
期刊介绍: Sustainable Futures: is a journal focused on the intersection of sustainability, environment and technology from various disciplines in social sciences, and their larger implications for corporation, government, education institutions, regions and society both at present and in the future. It provides an advanced platform for studies related to sustainability and sustainable development in society, economics, environment, and culture. The scope of the journal is broad and encourages interdisciplinary research, as well as welcoming theoretical and practical research from all methodological approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信