{"title":"超级电容器用泡沫镍表面生长氧化铁的水热合成","authors":"Keshab Pandey , Yong Gyu Lee , Hae Kyung Jeong","doi":"10.1016/j.cap.2025.01.011","DOIUrl":null,"url":null,"abstract":"<div><div>Metal oxides with nanostructures and nickel foam (NF) are evaluated as highly promising electrode materials for supercapacitors, though their performance is required for practical applications. In this study, we synthesized iron oxide nanoparticles from iron nitrate nonahydrate onto NF via a hydrothermal process at a low temperature of 120 °C for a short duration of 6 h. The performance was significantly influenced by optimizing the mass ratio of iron nitrate nonahydrate (0.25, 0.5, and 1 mmol) in terms of charge storage capability, surface area, impedance behavior, and energy density. The optimal loading of 0.5 mmol of iron nitrate nonahydrate on NF-based supercapacitors achieved a specific capacitance of 191.4 F g⁻<sup>1</sup> with an energy density of 17.1 Wh Kg⁻<sup>1</sup> at 1 A g⁻<sup>1</sup>. The relatively simple synthesis process and excellent performance of the iron oxide on NF composite highlights its potential as an electrode material for next-generation symmetric supercapacitors.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 56-64"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal synthesis of iron oxide grown on nickel foam for supercapacitors\",\"authors\":\"Keshab Pandey , Yong Gyu Lee , Hae Kyung Jeong\",\"doi\":\"10.1016/j.cap.2025.01.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal oxides with nanostructures and nickel foam (NF) are evaluated as highly promising electrode materials for supercapacitors, though their performance is required for practical applications. In this study, we synthesized iron oxide nanoparticles from iron nitrate nonahydrate onto NF via a hydrothermal process at a low temperature of 120 °C for a short duration of 6 h. The performance was significantly influenced by optimizing the mass ratio of iron nitrate nonahydrate (0.25, 0.5, and 1 mmol) in terms of charge storage capability, surface area, impedance behavior, and energy density. The optimal loading of 0.5 mmol of iron nitrate nonahydrate on NF-based supercapacitors achieved a specific capacitance of 191.4 F g⁻<sup>1</sup> with an energy density of 17.1 Wh Kg⁻<sup>1</sup> at 1 A g⁻<sup>1</sup>. The relatively simple synthesis process and excellent performance of the iron oxide on NF composite highlights its potential as an electrode material for next-generation symmetric supercapacitors.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"72 \",\"pages\":\"Pages 56-64\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925000124\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000124","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
具有纳米结构的金属氧化物和泡沫镍(NF)被评价为极有前途的超级电容器电极材料,尽管它们的性能在实际应用中是必需的。在本研究中,我们通过水热法在低温120°C下合成了非水合硝酸铁在NF上的氧化铁纳米颗粒。优化非水合硝酸铁的质量比(0.25、0.5和1 mmol),在电荷存储能力、表面积、阻抗行为和能量密度等方面对纳米颗粒的性能产生了显著影响。在以nf为基础的超级电容器上加载0.5 mmol非水合硝酸铁的最佳效果是达到191.4 F- 1的比容,在1 a g - 1时的能量密度为17.1 Wh Kg - 1。在NF复合材料上制备氧化铁的相对简单的合成工艺和优异的性能突出了其作为下一代对称超级电容器电极材料的潜力。
Hydrothermal synthesis of iron oxide grown on nickel foam for supercapacitors
Metal oxides with nanostructures and nickel foam (NF) are evaluated as highly promising electrode materials for supercapacitors, though their performance is required for practical applications. In this study, we synthesized iron oxide nanoparticles from iron nitrate nonahydrate onto NF via a hydrothermal process at a low temperature of 120 °C for a short duration of 6 h. The performance was significantly influenced by optimizing the mass ratio of iron nitrate nonahydrate (0.25, 0.5, and 1 mmol) in terms of charge storage capability, surface area, impedance behavior, and energy density. The optimal loading of 0.5 mmol of iron nitrate nonahydrate on NF-based supercapacitors achieved a specific capacitance of 191.4 F g⁻1 with an energy density of 17.1 Wh Kg⁻1 at 1 A g⁻1. The relatively simple synthesis process and excellent performance of the iron oxide on NF composite highlights its potential as an electrode material for next-generation symmetric supercapacitors.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.