Renato Morbidelli , Alessia Flammini , Odinakachukwu Echeta , Raffaele Albano , Gabriel Anzolin , David Zumr , Wafae Badi , Nicola Berni , Miriam Bertola , José María Bodoque , Theo Brandsma , Arianna Cauteruccio , Andrés Cesanelli , Luigi Cimorelli , Pedro L.B. Chaffe , Vinicius B.P. Chagas , Jacopo Dari , Cristiano das Neves Ameida , Andrés Díez-Herrrero , Nolan Doesken , Carla Saltalippi
{"title":"重新评估全球降雨数据时间分辨率的历史","authors":"Renato Morbidelli , Alessia Flammini , Odinakachukwu Echeta , Raffaele Albano , Gabriel Anzolin , David Zumr , Wafae Badi , Nicola Berni , Miriam Bertola , José María Bodoque , Theo Brandsma , Arianna Cauteruccio , Andrés Cesanelli , Luigi Cimorelli , Pedro L.B. Chaffe , Vinicius B.P. Chagas , Jacopo Dari , Cristiano das Neves Ameida , Andrés Díez-Herrrero , Nolan Doesken , Carla Saltalippi","doi":"10.1016/j.jhydrol.2025.132841","DOIUrl":null,"url":null,"abstract":"<div><div>The availability of rainfall data is of paramount importance in most hydrological studies and is directly dependent on the type of sensors used as well as the recording systems adopted. In fact, these elements have a crucial influence on the temporal resolution (t<sub>a</sub>) of stored rainfall data, which in turn affects the types of analysis that can be conducted, making knowledge of t<sub>a</sub> on a global scale of particular interest to the entire scientific community and also for engineers. For rain gauges installed more than 70–80 years ago the earliest recordings were manual with coarse temporal resolution. Instead, mechanical recordings on paper rolls began in the early decades of the last century, while digital recordings began only in the last four decades, making analyses requiring long time series of sub-hourly rainfall data impossible. This paper presents a significant update of a previous historical analysis of the time-resolution of t<sub>a</sub> (<span><span>Morbidelli et al., 2020</span></span>) by which 126,438 stations, located in 77 different geographical areas, were collected into a database, quintupling the number of stations of the previous database and including areas not considered before. It was found that a high percentage of rain gauge stations currently provides useful data at any time-resolution, but there is an increasing development of rainfall networks characterized by very inexpensive, volunteer-operated stations that acquire one data per day (t<sub>a</sub> = 1440 min), allowing only limited rainfall-related analyses. The invitation for all rain gauge network operators to contribute additional data to the database remains open.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"654 ","pages":"Article 132841"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reassessment of the history of the temporal resolution of rainfall data at the global scale\",\"authors\":\"Renato Morbidelli , Alessia Flammini , Odinakachukwu Echeta , Raffaele Albano , Gabriel Anzolin , David Zumr , Wafae Badi , Nicola Berni , Miriam Bertola , José María Bodoque , Theo Brandsma , Arianna Cauteruccio , Andrés Cesanelli , Luigi Cimorelli , Pedro L.B. Chaffe , Vinicius B.P. Chagas , Jacopo Dari , Cristiano das Neves Ameida , Andrés Díez-Herrrero , Nolan Doesken , Carla Saltalippi\",\"doi\":\"10.1016/j.jhydrol.2025.132841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The availability of rainfall data is of paramount importance in most hydrological studies and is directly dependent on the type of sensors used as well as the recording systems adopted. In fact, these elements have a crucial influence on the temporal resolution (t<sub>a</sub>) of stored rainfall data, which in turn affects the types of analysis that can be conducted, making knowledge of t<sub>a</sub> on a global scale of particular interest to the entire scientific community and also for engineers. For rain gauges installed more than 70–80 years ago the earliest recordings were manual with coarse temporal resolution. Instead, mechanical recordings on paper rolls began in the early decades of the last century, while digital recordings began only in the last four decades, making analyses requiring long time series of sub-hourly rainfall data impossible. This paper presents a significant update of a previous historical analysis of the time-resolution of t<sub>a</sub> (<span><span>Morbidelli et al., 2020</span></span>) by which 126,438 stations, located in 77 different geographical areas, were collected into a database, quintupling the number of stations of the previous database and including areas not considered before. It was found that a high percentage of rain gauge stations currently provides useful data at any time-resolution, but there is an increasing development of rainfall networks characterized by very inexpensive, volunteer-operated stations that acquire one data per day (t<sub>a</sub> = 1440 min), allowing only limited rainfall-related analyses. The invitation for all rain gauge network operators to contribute additional data to the database remains open.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"654 \",\"pages\":\"Article 132841\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169425001799\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425001799","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
摘要
降雨数据的可得性在大多数水文研究中是最重要的,它直接取决于所使用的传感器的类型以及所采用的记录系统。事实上,这些因素对储存的降雨数据的时间分辨率(ta)有至关重要的影响,而时间分辨率反过来又影响可进行的分析类型,使整个科学界和工程师对全球范围内的时间分辨率知识特别感兴趣。在70-80年前安装的雨量计,最早的记录是人工的,时间分辨率较低。相反,机械纸卷记录始于上个世纪的头几十年,而数字记录仅在最近四十年才开始,这使得需要长时间序列的亚小时降雨量数据进行分析是不可能的。本文对之前的时间分辨率历史分析(Morbidelli et al., 2020)进行了重大更新,其中将位于77个不同地理区域的126,438个站点收集到数据库中,将之前数据库的站点数量增加了五倍,并包括之前未考虑的地区。研究发现,目前有很大比例的雨量站提供任何时间分辨率的有用数据,但降雨网的发展日益增加,其特点是非常便宜的、志愿人员操作的站点每天获取一个数据(ta = 1440分钟),只能进行有限的与降雨有关的分析。所有雨量计网络营办商向数据库提供额外数据的邀请仍然开放。
A reassessment of the history of the temporal resolution of rainfall data at the global scale
The availability of rainfall data is of paramount importance in most hydrological studies and is directly dependent on the type of sensors used as well as the recording systems adopted. In fact, these elements have a crucial influence on the temporal resolution (ta) of stored rainfall data, which in turn affects the types of analysis that can be conducted, making knowledge of ta on a global scale of particular interest to the entire scientific community and also for engineers. For rain gauges installed more than 70–80 years ago the earliest recordings were manual with coarse temporal resolution. Instead, mechanical recordings on paper rolls began in the early decades of the last century, while digital recordings began only in the last four decades, making analyses requiring long time series of sub-hourly rainfall data impossible. This paper presents a significant update of a previous historical analysis of the time-resolution of ta (Morbidelli et al., 2020) by which 126,438 stations, located in 77 different geographical areas, were collected into a database, quintupling the number of stations of the previous database and including areas not considered before. It was found that a high percentage of rain gauge stations currently provides useful data at any time-resolution, but there is an increasing development of rainfall networks characterized by very inexpensive, volunteer-operated stations that acquire one data per day (ta = 1440 min), allowing only limited rainfall-related analyses. The invitation for all rain gauge network operators to contribute additional data to the database remains open.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.