遗传诺德豪斯-加达姆图

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Vaidy Sivaraman , Rebecca Whitman
{"title":"遗传诺德豪斯-加达姆图","authors":"Vaidy Sivaraman ,&nbsp;Rebecca Whitman","doi":"10.1016/j.dam.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>Nordhaus and Gaddum proved in 1956 that the sum of the chromatic number <span><math><mi>χ</mi></math></span> of a graph <span><math><mi>G</mi></math></span> and its complement is at most <span><math><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>. The Nordhaus–Gaddum graphs are the class of graphs satisfying this inequality with equality, and are well-understood. In this paper we consider a hereditary generalization: graphs <span><math><mi>G</mi></math></span> for which all induced subgraphs <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span> satisfy <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>+</mo><mi>χ</mi><mrow><mo>(</mo><mover><mrow><mi>H</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>≥</mo><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></math></span>. We characterize the forbidden induced subgraphs of this class and find its intersection with a number of common classes, including line graphs. We also discuss <span><math><mi>χ</mi></math></span>-boundedness and algorithmic results.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 150-164"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hereditary Nordhaus–Gaddum graphs\",\"authors\":\"Vaidy Sivaraman ,&nbsp;Rebecca Whitman\",\"doi\":\"10.1016/j.dam.2025.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nordhaus and Gaddum proved in 1956 that the sum of the chromatic number <span><math><mi>χ</mi></math></span> of a graph <span><math><mi>G</mi></math></span> and its complement is at most <span><math><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>. The Nordhaus–Gaddum graphs are the class of graphs satisfying this inequality with equality, and are well-understood. In this paper we consider a hereditary generalization: graphs <span><math><mi>G</mi></math></span> for which all induced subgraphs <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span> satisfy <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>+</mo><mi>χ</mi><mrow><mo>(</mo><mover><mrow><mi>H</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>≥</mo><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow></mrow></math></span>. We characterize the forbidden induced subgraphs of this class and find its intersection with a number of common classes, including line graphs. We also discuss <span><math><mi>χ</mi></math></span>-boundedness and algorithmic results.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"367 \",\"pages\":\"Pages 150-164\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500068X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500068X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Nordhaus和Gaddum在1956年证明了图G与其补的色数χ的和不超过|G|+1。诺德豪斯-加达姆图是一类用等式来满足这个不等式的图,并且是很容易理解的。本文研究了一类遗传推广图G,其中G的所有诱导子图H满足χ(H)+χ(H¯)≥|H|。我们描述了这类的禁止诱导子图,并找到了它与一些常见的类的交点,包括线形图。我们还讨论了χ-有界性和算法结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hereditary Nordhaus–Gaddum graphs
Nordhaus and Gaddum proved in 1956 that the sum of the chromatic number χ of a graph G and its complement is at most |G|+1. The Nordhaus–Gaddum graphs are the class of graphs satisfying this inequality with equality, and are well-understood. In this paper we consider a hereditary generalization: graphs G for which all induced subgraphs H of G satisfy χ(H)+χ(H¯)|H|. We characterize the forbidden induced subgraphs of this class and find its intersection with a number of common classes, including line graphs. We also discuss χ-boundedness and algorithmic results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信