描述伪球面或球面的高阶微分方程组

IF 2.3 2区 数学 Q1 MATHEMATICS
Filipe Kelmer , Keti Tenenblat
{"title":"描述伪球面或球面的高阶微分方程组","authors":"Filipe Kelmer ,&nbsp;Keti Tenenblat","doi":"10.1016/j.jde.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>We consider systems of partial differential equations of the form<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msup><mrow><mo>∂</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>u</mi><mo>/</mo><mo>∂</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>v</mi><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msup><mrow><mo>∂</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>v</mi><mo>/</mo><mo>∂</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>x</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>G</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msup><mrow><mo>∂</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>u</mi><mo>/</mo><mo>∂</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>v</mi><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msup><mrow><mo>∂</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>v</mi><mo>∂</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> <span><math><mi>n</mi><mo>,</mo><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, describing pseudospherical (<strong>pss</strong>) or spherical surfaces (<strong>ss</strong>). Generic solutions of such a system define metrics on open subsets of the plane, with coordinates <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>, whose Gaussian curvature is <span><math><mi>K</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> or <span><math><mi>K</mi><mo>=</mo><mn>1</mn></math></span>. These systems are the integrability conditions of <span><math><mi>g</mi></math></span>-valued linear problems, with <span><math><mi>g</mi><mo>=</mo><mrow><mi>sl</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>R</mi><mo>)</mo></math></span> or <span><math><mi>g</mi><mo>=</mo><mrow><mi>su</mi></mrow><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, when <span><math><mi>K</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, <span><math><mi>K</mi><mo>=</mo><mn>1</mn></math></span>, respectively. We obtain classification results for classes of such systems of differential equations of order <em>n</em> and <em>m</em>, in terms of four arbitrary smooth functions satisfying certain generic conditions. We also provide classification results for special type of second and third order systems. We include several explicit examples. Applications of the theory provide new examples and new families of systems of differential equations which contain the vector short-pulse and its generalizations. We provide the first conservation laws, from an infinite sequence, for some of the systems that describe <strong>pss</strong>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"424 ","pages":"Pages 833-858"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systems of differential equations of higher order describing pseudo-spherical or spherical surfaces\",\"authors\":\"Filipe Kelmer ,&nbsp;Keti Tenenblat\",\"doi\":\"10.1016/j.jde.2025.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider systems of partial differential equations of the form<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msup><mrow><mo>∂</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>u</mi><mo>/</mo><mo>∂</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>v</mi><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msup><mrow><mo>∂</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>v</mi><mo>/</mo><mo>∂</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>x</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>G</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msup><mrow><mo>∂</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>u</mi><mo>/</mo><mo>∂</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>v</mi><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msup><mrow><mo>∂</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>v</mi><mo>∂</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> <span><math><mi>n</mi><mo>,</mo><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, describing pseudospherical (<strong>pss</strong>) or spherical surfaces (<strong>ss</strong>). Generic solutions of such a system define metrics on open subsets of the plane, with coordinates <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>, whose Gaussian curvature is <span><math><mi>K</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> or <span><math><mi>K</mi><mo>=</mo><mn>1</mn></math></span>. These systems are the integrability conditions of <span><math><mi>g</mi></math></span>-valued linear problems, with <span><math><mi>g</mi><mo>=</mo><mrow><mi>sl</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>R</mi><mo>)</mo></math></span> or <span><math><mi>g</mi><mo>=</mo><mrow><mi>su</mi></mrow><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, when <span><math><mi>K</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, <span><math><mi>K</mi><mo>=</mo><mn>1</mn></math></span>, respectively. We obtain classification results for classes of such systems of differential equations of order <em>n</em> and <em>m</em>, in terms of four arbitrary smooth functions satisfying certain generic conditions. We also provide classification results for special type of second and third order systems. We include several explicit examples. Applications of the theory provide new examples and new families of systems of differential equations which contain the vector short-pulse and its generalizations. We provide the first conservation laws, from an infinite sequence, for some of the systems that describe <strong>pss</strong>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"424 \",\"pages\":\"Pages 833-858\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625001081\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001081","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑如下形式的偏微分方程系统:{uxt=F(u,ux,…,∂nu/∂xn,v,vx,…,∂mv/∂xm),vxt=G(u,ux,…,∂nu/∂xn,v,vx,…,∂mv∂xm), n,m≥2,描述假球面(pss)或球面(ss)。这种系统的一般解定义了平面上的开子集上的度量,坐标为(x,t),其高斯曲率为K= - 1或K=1。这些系统分别是当K= - 1, K=1时,g=sl(2,R)或g=su(2)的g值线性问题的可积性条件。我们用满足一定一般条件的四个任意光滑函数,得到了这类n阶和m阶微分方程系统的分类结果。我们也给出了特殊类型的二阶和三阶系统的分类结果。我们包括几个明确的例子。该理论的应用提供了包含向量短脉冲及其推广的新的例子和新的微分方程组族。我们从一个无限序列中,为一些描述pss的系统提供了第一个守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systems of differential equations of higher order describing pseudo-spherical or spherical surfaces
We consider systems of partial differential equations of the form{uxt=F(u,ux,...,nu/xn,v,vx,...,mv/xm),vxt=G(u,ux,...,nu/xn,v,vx,...,mvxm), n,m2, describing pseudospherical (pss) or spherical surfaces (ss). Generic solutions of such a system define metrics on open subsets of the plane, with coordinates (x,t), whose Gaussian curvature is K=1 or K=1. These systems are the integrability conditions of g-valued linear problems, with g=sl(2,R) or g=su(2), when K=1, K=1, respectively. We obtain classification results for classes of such systems of differential equations of order n and m, in terms of four arbitrary smooth functions satisfying certain generic conditions. We also provide classification results for special type of second and third order systems. We include several explicit examples. Applications of the theory provide new examples and new families of systems of differential equations which contain the vector short-pulse and its generalizations. We provide the first conservation laws, from an infinite sequence, for some of the systems that describe pss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信