Yumo She , Peng Wu , Wenyu Wan , He Liu , Ruonan Liu , Tingting Wang , Mengyao Wang , Lufan Shen , Yuanyuan Yang , Xingyong Huang , Xiaoyue Zhang , Ye Tian , Kai Zhang
{"title":"基于多糖、蛋白质和DNA的刺激反应性水凝胶促进伤口愈合和修复:综述","authors":"Yumo She , Peng Wu , Wenyu Wan , He Liu , Ruonan Liu , Tingting Wang , Mengyao Wang , Lufan Shen , Yuanyuan Yang , Xingyong Huang , Xiaoyue Zhang , Ye Tian , Kai Zhang","doi":"10.1016/j.ijbiomac.2025.140961","DOIUrl":null,"url":null,"abstract":"<div><div>The healing of various wounds remains a serious challenge in the medical field, hydrogel has high hydrophilicity and biocompatibility due to its unique network structure, which shows a strong advantage in the field of wound healing. Stimulus responsive hydrogels are particularly effective,which can control the material properties according to the external stimulus source, and provide more targeted treatment for different wounds. Here, we review physiological mechanisms of wound healing and the relationship between polysaccharides, proteins and DNA based stimulus responsive hydrogels and wound healing, materials commonly used of polysaccharides, proteins and DNA based stimulus responsive hydrogels, mechanisms of stimulus responsive hydrogels formation and network structure types, common properties of polysaccharides, proteins and DNA based stimulus responsive hydrogels for promoting wound healing and discuss their applications in medicine. Finally, the limitations and application prospects of polysaccharides, proteins and DNA based stimulus responsive hydrogels were discussed and evaluated. The review focuses on the biomedical use of polysaccharides, proteins and DNA based stimulus responsive hydrogels in wound healing and repair, and provides insights for the development of clinical related materials.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"304 ","pages":"Article 140961"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polysaccharides, proteins and DNA based stimulus responsive hydrogels promoting wound healing and repair: A review\",\"authors\":\"Yumo She , Peng Wu , Wenyu Wan , He Liu , Ruonan Liu , Tingting Wang , Mengyao Wang , Lufan Shen , Yuanyuan Yang , Xingyong Huang , Xiaoyue Zhang , Ye Tian , Kai Zhang\",\"doi\":\"10.1016/j.ijbiomac.2025.140961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The healing of various wounds remains a serious challenge in the medical field, hydrogel has high hydrophilicity and biocompatibility due to its unique network structure, which shows a strong advantage in the field of wound healing. Stimulus responsive hydrogels are particularly effective,which can control the material properties according to the external stimulus source, and provide more targeted treatment for different wounds. Here, we review physiological mechanisms of wound healing and the relationship between polysaccharides, proteins and DNA based stimulus responsive hydrogels and wound healing, materials commonly used of polysaccharides, proteins and DNA based stimulus responsive hydrogels, mechanisms of stimulus responsive hydrogels formation and network structure types, common properties of polysaccharides, proteins and DNA based stimulus responsive hydrogels for promoting wound healing and discuss their applications in medicine. Finally, the limitations and application prospects of polysaccharides, proteins and DNA based stimulus responsive hydrogels were discussed and evaluated. The review focuses on the biomedical use of polysaccharides, proteins and DNA based stimulus responsive hydrogels in wound healing and repair, and provides insights for the development of clinical related materials.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"304 \",\"pages\":\"Article 140961\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813025015107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025015107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Polysaccharides, proteins and DNA based stimulus responsive hydrogels promoting wound healing and repair: A review
The healing of various wounds remains a serious challenge in the medical field, hydrogel has high hydrophilicity and biocompatibility due to its unique network structure, which shows a strong advantage in the field of wound healing. Stimulus responsive hydrogels are particularly effective,which can control the material properties according to the external stimulus source, and provide more targeted treatment for different wounds. Here, we review physiological mechanisms of wound healing and the relationship between polysaccharides, proteins and DNA based stimulus responsive hydrogels and wound healing, materials commonly used of polysaccharides, proteins and DNA based stimulus responsive hydrogels, mechanisms of stimulus responsive hydrogels formation and network structure types, common properties of polysaccharides, proteins and DNA based stimulus responsive hydrogels for promoting wound healing and discuss their applications in medicine. Finally, the limitations and application prospects of polysaccharides, proteins and DNA based stimulus responsive hydrogels were discussed and evaluated. The review focuses on the biomedical use of polysaccharides, proteins and DNA based stimulus responsive hydrogels in wound healing and repair, and provides insights for the development of clinical related materials.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.