TPU纳米复合材料具有良好的粘接强度和耐水性,适用于热升华转移印花

IF 3.2 3区 材料科学 Q2 ENGINEERING, CHEMICAL
Jinxin Zhu , Wenjie Mou , Xiaoquan Li , Gongman He , Chenyu He , Yueru Li
{"title":"TPU纳米复合材料具有良好的粘接强度和耐水性,适用于热升华转移印花","authors":"Jinxin Zhu ,&nbsp;Wenjie Mou ,&nbsp;Xiaoquan Li ,&nbsp;Gongman He ,&nbsp;Chenyu He ,&nbsp;Yueru Li","doi":"10.1016/j.ijadhadh.2025.103972","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoplastic polyurethane (TPU) is widely used as a hot-melt adhesive in various applications, particularly in fabric heat transfer printing. Among the commonly used heat transfer inks, direct-to-film (DTF) ink and sublimation ink are most prevalent. However, DTF ink exhibits poor affinity for natural fabrics such as cotton, and sublimation ink lacks white pigment. Additionally, the inherent transparency of TPU limits its application in heat transfer printing on dark fabrics. To address these limitations, this study employs nano titanium dioxide (TiO<sub>2</sub>) to color TPU, enhancing its opacity and enabling its use on dark fabrics. Furthermore, by incorporating triglycidyl isocyanurate (TGIC), a crosslinking reaction is induced in the TPU/TiO<sub>2</sub> composite, facilitating its application on both dark fabrics and natural fibers like cotton. The resulting TPU-based nanocomposite demonstrates excellent adhesion strength and water resistance. When the TiO<sub>2</sub> content reaches 10 % (designated as TT10), the composite exhibits a high whiteness index, indicative of strong opacity. The addition of 1 % TGIC further crosslinks the TPU/TiO<sub>2</sub> composite, maintaining its strong opacity while enhancing adhesion strength and water resistance. Notably, the adhesive strength of the composite surpasses that of pure TPU, and its water resistance improves as well. This TPU-based nanocomposite shows promise for heat transfer printing applications on dark fabrics and natural materials such as cotton.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"139 ","pages":"Article 103972"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TPU nanocomposites with good adhesive strength and water resistance for thermal sublimation transfer printing\",\"authors\":\"Jinxin Zhu ,&nbsp;Wenjie Mou ,&nbsp;Xiaoquan Li ,&nbsp;Gongman He ,&nbsp;Chenyu He ,&nbsp;Yueru Li\",\"doi\":\"10.1016/j.ijadhadh.2025.103972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermoplastic polyurethane (TPU) is widely used as a hot-melt adhesive in various applications, particularly in fabric heat transfer printing. Among the commonly used heat transfer inks, direct-to-film (DTF) ink and sublimation ink are most prevalent. However, DTF ink exhibits poor affinity for natural fabrics such as cotton, and sublimation ink lacks white pigment. Additionally, the inherent transparency of TPU limits its application in heat transfer printing on dark fabrics. To address these limitations, this study employs nano titanium dioxide (TiO<sub>2</sub>) to color TPU, enhancing its opacity and enabling its use on dark fabrics. Furthermore, by incorporating triglycidyl isocyanurate (TGIC), a crosslinking reaction is induced in the TPU/TiO<sub>2</sub> composite, facilitating its application on both dark fabrics and natural fibers like cotton. The resulting TPU-based nanocomposite demonstrates excellent adhesion strength and water resistance. When the TiO<sub>2</sub> content reaches 10 % (designated as TT10), the composite exhibits a high whiteness index, indicative of strong opacity. The addition of 1 % TGIC further crosslinks the TPU/TiO<sub>2</sub> composite, maintaining its strong opacity while enhancing adhesion strength and water resistance. Notably, the adhesive strength of the composite surpasses that of pure TPU, and its water resistance improves as well. This TPU-based nanocomposite shows promise for heat transfer printing applications on dark fabrics and natural materials such as cotton.</div></div>\",\"PeriodicalId\":13732,\"journal\":{\"name\":\"International Journal of Adhesion and Adhesives\",\"volume\":\"139 \",\"pages\":\"Article 103972\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adhesion and Adhesives\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143749625000399\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749625000399","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

热塑性聚氨酯(TPU)作为热熔胶广泛应用于各种应用,特别是在织物热转印中。在常用的热转印油墨中,直接成膜(DTF)油墨和升华油墨最为普遍。然而,DTF油墨对天然织物(如棉花)的亲和力较差,升华油墨缺乏白色颜料。此外,TPU固有的透明度限制了其在深色织物热转印上的应用。为了解决这些限制,本研究采用纳米二氧化钛(TiO2)对TPU着色,提高其不透明度,使其能够在深色织物上使用。此外,通过加入异氰尿酸三甘油酯(TGIC), TPU/TiO2复合材料发生交联反应,使其在深色织物和天然纤维(如棉花)上的应用更加便利。所得的tpu基纳米复合材料具有优异的粘接强度和耐水性。当TiO2含量达到10%(指定为TT10)时,复合材料的白度指数高,不透明度强。添加1%的TGIC进一步使TPU/TiO2复合材料交联,在保持其强不透明度的同时提高了附着力和耐水性。值得注意的是,复合材料的粘接强度超过了纯TPU,其耐水性也有所提高。这种基于tpu的纳米复合材料有望在深色织物和天然材料(如棉花)上应用热转印。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TPU nanocomposites with good adhesive strength and water resistance for thermal sublimation transfer printing
Thermoplastic polyurethane (TPU) is widely used as a hot-melt adhesive in various applications, particularly in fabric heat transfer printing. Among the commonly used heat transfer inks, direct-to-film (DTF) ink and sublimation ink are most prevalent. However, DTF ink exhibits poor affinity for natural fabrics such as cotton, and sublimation ink lacks white pigment. Additionally, the inherent transparency of TPU limits its application in heat transfer printing on dark fabrics. To address these limitations, this study employs nano titanium dioxide (TiO2) to color TPU, enhancing its opacity and enabling its use on dark fabrics. Furthermore, by incorporating triglycidyl isocyanurate (TGIC), a crosslinking reaction is induced in the TPU/TiO2 composite, facilitating its application on both dark fabrics and natural fibers like cotton. The resulting TPU-based nanocomposite demonstrates excellent adhesion strength and water resistance. When the TiO2 content reaches 10 % (designated as TT10), the composite exhibits a high whiteness index, indicative of strong opacity. The addition of 1 % TGIC further crosslinks the TPU/TiO2 composite, maintaining its strong opacity while enhancing adhesion strength and water resistance. Notably, the adhesive strength of the composite surpasses that of pure TPU, and its water resistance improves as well. This TPU-based nanocomposite shows promise for heat transfer printing applications on dark fabrics and natural materials such as cotton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Adhesion and Adhesives
International Journal of Adhesion and Adhesives 工程技术-材料科学:综合
CiteScore
6.90
自引率
8.80%
发文量
200
审稿时长
8.3 months
期刊介绍: The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信