{"title":"在A型和B型考克斯特组中枚举带符号的交替运行","authors":"Hiranya Kishore Dey , Sivaramakrishnan Sivasubramanian","doi":"10.1016/j.disc.2025.114439","DOIUrl":null,"url":null,"abstract":"<div><div>We enumerate alternating runs in the alternating group <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. This leads us to enumerate the bivariate peak and valley polynomial with sign taken into account. We prove an exact formula for this signed enumerator in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and show that this polynomial depends on the value of <span><math><mi>n</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. If <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is the polynomial enumerating alternating runs in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, Wilf showed that <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and determined the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> be the polynomials enumerating alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> respectively. By finding the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, we refine Wilfs result when <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. When <span><math><mi>n</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, we show that the exponent is one short of what Wilf obtains.</div><div>As applications of our results, we get moment type identities involving the coefficients of <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, refinements to enumerating alternating and unimodal permutations in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and Central Limit Theorems about alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Similar results are obtained for type B Coxeter groups.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114439"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumerating alternating-runs with sign in Type A and Type B Coxeter groups\",\"authors\":\"Hiranya Kishore Dey , Sivaramakrishnan Sivasubramanian\",\"doi\":\"10.1016/j.disc.2025.114439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We enumerate alternating runs in the alternating group <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. This leads us to enumerate the bivariate peak and valley polynomial with sign taken into account. We prove an exact formula for this signed enumerator in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and show that this polynomial depends on the value of <span><math><mi>n</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. If <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is the polynomial enumerating alternating runs in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, Wilf showed that <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and determined the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> be the polynomials enumerating alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> respectively. By finding the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, we refine Wilfs result when <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. When <span><math><mi>n</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, we show that the exponent is one short of what Wilf obtains.</div><div>As applications of our results, we get moment type identities involving the coefficients of <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, refinements to enumerating alternating and unimodal permutations in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and Central Limit Theorems about alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Similar results are obtained for type B Coxeter groups.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 6\",\"pages\":\"Article 114439\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000470\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000470","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Enumerating alternating-runs with sign in Type A and Type B Coxeter groups
We enumerate alternating runs in the alternating group . This leads us to enumerate the bivariate peak and valley polynomial with sign taken into account. We prove an exact formula for this signed enumerator in and show that this polynomial depends on the value of . If is the polynomial enumerating alternating runs in , Wilf showed that divides and determined the exponent of that divides . Let and be the polynomials enumerating alternating runs in and respectively. By finding the exponent of that divides , we refine Wilfs result when . When , we show that the exponent is one short of what Wilf obtains.
As applications of our results, we get moment type identities involving the coefficients of , refinements to enumerating alternating and unimodal permutations in , and Central Limit Theorems about alternating runs in and . Similar results are obtained for type B Coxeter groups.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.