在A型和B型考克斯特组中枚举带符号的交替运行

IF 0.7 3区 数学 Q2 MATHEMATICS
Hiranya Kishore Dey , Sivaramakrishnan Sivasubramanian
{"title":"在A型和B型考克斯特组中枚举带符号的交替运行","authors":"Hiranya Kishore Dey ,&nbsp;Sivaramakrishnan Sivasubramanian","doi":"10.1016/j.disc.2025.114439","DOIUrl":null,"url":null,"abstract":"<div><div>We enumerate alternating runs in the alternating group <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. This leads us to enumerate the bivariate peak and valley polynomial with sign taken into account. We prove an exact formula for this signed enumerator in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and show that this polynomial depends on the value of <span><math><mi>n</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. If <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is the polynomial enumerating alternating runs in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, Wilf showed that <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and determined the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> be the polynomials enumerating alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> respectively. By finding the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, we refine Wilfs result when <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. When <span><math><mi>n</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, we show that the exponent is one short of what Wilf obtains.</div><div>As applications of our results, we get moment type identities involving the coefficients of <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, refinements to enumerating alternating and unimodal permutations in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and Central Limit Theorems about alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Similar results are obtained for type B Coxeter groups.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114439"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumerating alternating-runs with sign in Type A and Type B Coxeter groups\",\"authors\":\"Hiranya Kishore Dey ,&nbsp;Sivaramakrishnan Sivasubramanian\",\"doi\":\"10.1016/j.disc.2025.114439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We enumerate alternating runs in the alternating group <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. This leads us to enumerate the bivariate peak and valley polynomial with sign taken into account. We prove an exact formula for this signed enumerator in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and show that this polynomial depends on the value of <span><math><mi>n</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. If <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is the polynomial enumerating alternating runs in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, Wilf showed that <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and determined the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> be the polynomials enumerating alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> respectively. By finding the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, we refine Wilfs result when <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. When <span><math><mi>n</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, we show that the exponent is one short of what Wilf obtains.</div><div>As applications of our results, we get moment type identities involving the coefficients of <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, refinements to enumerating alternating and unimodal permutations in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and Central Limit Theorems about alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Similar results are obtained for type B Coxeter groups.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 6\",\"pages\":\"Article 114439\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000470\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000470","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们列举了交替组中的交替运行。这导致我们列举了考虑了符号的二元峰谷多项式。我们证明了Sn中这个有符号枚举数的一个精确公式,并证明了这个多项式依赖于n(mod4)的值。如果Rn(t)是枚举Sn中交替运行的多项式,则Wilf证明了(1+t)能整除Rn(t),并确定了能整除Rn(t)的(1+t)指数。设Rn+(t)和Rn−(t)分别为在An和Sn−An中交替运行的多项式。通过找出(1+t)除以Rn±(t)的指数,我们改进了n≡2,3(mod4)时的Wilfs结果。当n≡0,1(mod4)时,我们证明了指数比Wilf得到的少一个。作为我们的结果的应用,我们得到了包含Rn±(t)系数的矩型恒等式,改进了在An, Sn−An中枚举交替和单峰排列,以及关于An和Sn−An中交替运行的中心极限定理。B型Coxeter组也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumerating alternating-runs with sign in Type A and Type B Coxeter groups
We enumerate alternating runs in the alternating group AnSn. This leads us to enumerate the bivariate peak and valley polynomial with sign taken into account. We prove an exact formula for this signed enumerator in Sn and show that this polynomial depends on the value of n(mod4). If Rn(t) is the polynomial enumerating alternating runs in Sn, Wilf showed that (1+t) divides Rn(t) and determined the exponent of (1+t) that divides Rn(t). Let Rn+(t) and Rn(t) be the polynomials enumerating alternating runs in An and SnAn respectively. By finding the exponent of (1+t) that divides Rn±(t), we refine Wilfs result when n2,3(mod4). When n0,1(mod4), we show that the exponent is one short of what Wilf obtains.
As applications of our results, we get moment type identities involving the coefficients of Rn±(t), refinements to enumerating alternating and unimodal permutations in An, SnAn and Central Limit Theorems about alternating runs in An and SnAn. Similar results are obtained for type B Coxeter groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信