几乎聚类图中的支配子着色和CD着色

IF 0.9 3区 计算机科学 Q1 BUSINESS, FINANCE
Aritra Banik , Prahlad Narasimhan Kasthurirangan , Venkatesh Raman
{"title":"几乎聚类图中的支配子着色和CD着色","authors":"Aritra Banik ,&nbsp;Prahlad Narasimhan Kasthurirangan ,&nbsp;Venkatesh Raman","doi":"10.1016/j.jcss.2025.103633","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study two variants of Coloring - <span>Dominator Coloring</span> and <span>Class Domination Coloring</span>. In both problems, we are given a graph <em>G</em> and a <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span> and the goal is to properly color the vertices with at most <em>ℓ</em> colors. In <span>Dominator Coloring</span>, we require for each <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, a color <em>c</em> such that <em>v</em> dominates all vertices colored <em>c</em>. In <span>Class Domination Coloring</span>, we require for each color <em>c</em>, a <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> which dominates all vertices colored <em>c</em>. We prove that <span>Dominator Coloring</span> is <span>FPT</span> when parameterized by the size of a graph's CVD set and that <span>Class Domination Coloring</span> is <span>FPT</span> parameterized by CVD set size plus the number of remaining cliques. En route, we design simpler algorithms when the problems are parameterized by the size of a graph's twin cover. When the parameter is the size of a graph's clique modulator, we design a randomized single-exponential time algorithm.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"150 ","pages":"Article 103633"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominator coloring and CD coloring in almost cluster graphs\",\"authors\":\"Aritra Banik ,&nbsp;Prahlad Narasimhan Kasthurirangan ,&nbsp;Venkatesh Raman\",\"doi\":\"10.1016/j.jcss.2025.103633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study two variants of Coloring - <span>Dominator Coloring</span> and <span>Class Domination Coloring</span>. In both problems, we are given a graph <em>G</em> and a <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span> and the goal is to properly color the vertices with at most <em>ℓ</em> colors. In <span>Dominator Coloring</span>, we require for each <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, a color <em>c</em> such that <em>v</em> dominates all vertices colored <em>c</em>. In <span>Class Domination Coloring</span>, we require for each color <em>c</em>, a <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> which dominates all vertices colored <em>c</em>. We prove that <span>Dominator Coloring</span> is <span>FPT</span> when parameterized by the size of a graph's CVD set and that <span>Class Domination Coloring</span> is <span>FPT</span> parameterized by CVD set size plus the number of remaining cliques. En route, we design simpler algorithms when the problems are parameterized by the size of a graph's twin cover. When the parameter is the size of a graph's clique modulator, we design a randomized single-exponential time algorithm.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"150 \",\"pages\":\"Article 103633\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025000157\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000157","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了着色的两种变体——支配着色和类支配着色。在这两个问题中,我们给定一个图G和一个r∈N,目标是用最多r种颜色给顶点上色。在支配着色中,我们要求对于每个v∈v (G),有一个颜色c,使得v支配所有颜色c的顶点。在类支配着色中,我们要求对于每个颜色c,有一个v∈v (G),它支配所有颜色c的顶点。我们证明当用图的CVD集的大小参数化时,支配着色是FPT,并且类支配着色是用CVD集的大小加上剩余的团的数量参数化的FPT。在此过程中,当问题由图的双覆盖的大小参数化时,我们设计了更简单的算法。当参数为图团调制器的大小时,我们设计了一个随机化的单指数时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dominator coloring and CD coloring in almost cluster graphs
In this paper, we study two variants of Coloring - Dominator Coloring and Class Domination Coloring. In both problems, we are given a graph G and a N and the goal is to properly color the vertices with at most colors. In Dominator Coloring, we require for each vV(G), a color c such that v dominates all vertices colored c. In Class Domination Coloring, we require for each color c, a vV(G) which dominates all vertices colored c. We prove that Dominator Coloring is FPT when parameterized by the size of a graph's CVD set and that Class Domination Coloring is FPT parameterized by CVD set size plus the number of remaining cliques. En route, we design simpler algorithms when the problems are parameterized by the size of a graph's twin cover. When the parameter is the size of a graph's clique modulator, we design a randomized single-exponential time algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信