具有Neumann边界条件的临界椭圆系统的多边峰解

IF 2.3 2区 数学 Q1 MATHEMATICS
Yuxia Guo, Shengyu Wu, Tingfeng Yuan
{"title":"具有Neumann边界条件的临界椭圆系统的多边峰解","authors":"Yuxia Guo,&nbsp;Shengyu Wu,&nbsp;Tingfeng Yuan","doi":"10.1016/j.jde.2025.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the following elliptic system with Neumann boundary condition:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>v</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>v</mi></mrow><mrow><mo>∂</mo><mi>n</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a smooth bounded domain, <em>μ</em> is a positive constant and <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> lies in the critical hyperbola:<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>.</mo></math></span></span></span> By using the Lyapunov-Schmidt reduction technique, we establish the existence of infinitely many solutions to above system. These solutions have multiple peaks that are located on the boundary ∂Ω. Our results show that the geometry of the boundary ∂Ω, especially its mean curvature, plays a crucial role on the existence and the behaviour of the solutions to the problem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"428 ","pages":"Pages 59-112"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple boundary peak solution for critical elliptic system with Neumann boundary condition\",\"authors\":\"Yuxia Guo,&nbsp;Shengyu Wu,&nbsp;Tingfeng Yuan\",\"doi\":\"10.1016/j.jde.2025.02.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the following elliptic system with Neumann boundary condition:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>v</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>v</mi></mrow><mrow><mo>∂</mo><mi>n</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a smooth bounded domain, <em>μ</em> is a positive constant and <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> lies in the critical hyperbola:<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>.</mo></math></span></span></span> By using the Lyapunov-Schmidt reduction technique, we establish the existence of infinitely many solutions to above system. These solutions have multiple peaks that are located on the boundary ∂Ω. Our results show that the geometry of the boundary ∂Ω, especially its mean curvature, plays a crucial role on the existence and the behaviour of the solutions to the problem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"428 \",\"pages\":\"Pages 59-112\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625001263\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001263","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑以下具有诺伊曼边界条件的椭圆系统:{−Δu+μu=vp,在Ω,−Δv+μv=uq,在Ω,∂u∂n=∂v∂n=0,在∂Ω,u>0,v>0,在Ω,其中Ω∧RN是光滑有界域,μ是正常数,(p,q)位于临界双曲线:1p+1+1q+1= n−2N。利用Lyapunov-Schmidt约简技术,证明了该系统存在无穷多个解。这些解决方案有多个位于边界∂Ω上的峰值。我们的结果表明,边界∂Ω的几何形状,特别是它的平均曲率,对问题解的存在性和行为起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple boundary peak solution for critical elliptic system with Neumann boundary condition
We consider the following elliptic system with Neumann boundary condition:{Δu+μu=vp,in Ω,Δv+μv=uq,in Ω,un=vn=0,on Ω,u>0,v>0,in Ω, where ΩRN is a smooth bounded domain, μ is a positive constant and (p,q) lies in the critical hyperbola:1p+1+1q+1=N2N. By using the Lyapunov-Schmidt reduction technique, we establish the existence of infinitely many solutions to above system. These solutions have multiple peaks that are located on the boundary ∂Ω. Our results show that the geometry of the boundary ∂Ω, especially its mean curvature, plays a crucial role on the existence and the behaviour of the solutions to the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信