{"title":"具有Neumann边界条件的临界椭圆系统的多边峰解","authors":"Yuxia Guo, Shengyu Wu, Tingfeng Yuan","doi":"10.1016/j.jde.2025.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the following elliptic system with Neumann boundary condition:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>v</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>v</mi></mrow><mrow><mo>∂</mo><mi>n</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a smooth bounded domain, <em>μ</em> is a positive constant and <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> lies in the critical hyperbola:<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>.</mo></math></span></span></span> By using the Lyapunov-Schmidt reduction technique, we establish the existence of infinitely many solutions to above system. These solutions have multiple peaks that are located on the boundary ∂Ω. Our results show that the geometry of the boundary ∂Ω, especially its mean curvature, plays a crucial role on the existence and the behaviour of the solutions to the problem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"428 ","pages":"Pages 59-112"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple boundary peak solution for critical elliptic system with Neumann boundary condition\",\"authors\":\"Yuxia Guo, Shengyu Wu, Tingfeng Yuan\",\"doi\":\"10.1016/j.jde.2025.02.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the following elliptic system with Neumann boundary condition:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>v</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>v</mi></mrow><mrow><mo>∂</mo><mi>n</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a smooth bounded domain, <em>μ</em> is a positive constant and <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> lies in the critical hyperbola:<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>.</mo></math></span></span></span> By using the Lyapunov-Schmidt reduction technique, we establish the existence of infinitely many solutions to above system. These solutions have multiple peaks that are located on the boundary ∂Ω. Our results show that the geometry of the boundary ∂Ω, especially its mean curvature, plays a crucial role on the existence and the behaviour of the solutions to the problem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"428 \",\"pages\":\"Pages 59-112\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625001263\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001263","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiple boundary peak solution for critical elliptic system with Neumann boundary condition
We consider the following elliptic system with Neumann boundary condition: where is a smooth bounded domain, μ is a positive constant and lies in the critical hyperbola: By using the Lyapunov-Schmidt reduction technique, we establish the existence of infinitely many solutions to above system. These solutions have multiple peaks that are located on the boundary ∂Ω. Our results show that the geometry of the boundary ∂Ω, especially its mean curvature, plays a crucial role on the existence and the behaviour of the solutions to the problem.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics