关于普通和广义baumslag -孤群的共轭可分性

IF 0.7 2区 数学 Q2 MATHEMATICS
E.V. Sokolov
{"title":"关于普通和广义baumslag -孤群的共轭可分性","authors":"E.V. Sokolov","doi":"10.1016/j.jpaa.2025.107906","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>C</mi></math></span> be a class of groups. A group <em>X</em> is said to be residually a <span><math><mi>C</mi></math></span>-group (conjugacy <span><math><mi>C</mi></math></span>-separable) if, for any elements <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>X</mi></math></span> that are not equal (not conjugate in <em>X</em>), there exists a homomorphism <em>σ</em> of <em>X</em> onto a group from <span><math><mi>C</mi></math></span> such that the elements <em>xσ</em> and <em>yσ</em> are still not equal (respectively, not conjugate in <em>Xσ</em>). A generalized Baumslag–Solitar group or GBS-group is the fundamental group of a finite connected graph of groups whose vertex and edge groups are all infinite cyclic. An ordinary Baumslag–Solitar group is the GBS-group that corresponds to a graph containing only one vertex and one loop. Suppose that the class <span><math><mi>C</mi></math></span> consists of periodic groups and is closed under taking subgroups and unrestricted wreath products. We prove that a non-solvable GBS-group is conjugacy <span><math><mi>C</mi></math></span>-separable if and only if it is residually a <span><math><mi>C</mi></math></span>-group. We also find a criterion for a solvable GBS-group to be conjugacy <span><math><mi>C</mi></math></span>-separable. As a corollary, we prove that an arbitrary GBS-group is conjugacy (finite) separable if and only if it is residually finite.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107906"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the conjugacy separability of ordinary and generalized Baumslag–Solitar groups\",\"authors\":\"E.V. Sokolov\",\"doi\":\"10.1016/j.jpaa.2025.107906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>C</mi></math></span> be a class of groups. A group <em>X</em> is said to be residually a <span><math><mi>C</mi></math></span>-group (conjugacy <span><math><mi>C</mi></math></span>-separable) if, for any elements <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>X</mi></math></span> that are not equal (not conjugate in <em>X</em>), there exists a homomorphism <em>σ</em> of <em>X</em> onto a group from <span><math><mi>C</mi></math></span> such that the elements <em>xσ</em> and <em>yσ</em> are still not equal (respectively, not conjugate in <em>Xσ</em>). A generalized Baumslag–Solitar group or GBS-group is the fundamental group of a finite connected graph of groups whose vertex and edge groups are all infinite cyclic. An ordinary Baumslag–Solitar group is the GBS-group that corresponds to a graph containing only one vertex and one loop. Suppose that the class <span><math><mi>C</mi></math></span> consists of periodic groups and is closed under taking subgroups and unrestricted wreath products. We prove that a non-solvable GBS-group is conjugacy <span><math><mi>C</mi></math></span>-separable if and only if it is residually a <span><math><mi>C</mi></math></span>-group. We also find a criterion for a solvable GBS-group to be conjugacy <span><math><mi>C</mi></math></span>-separable. As a corollary, we prove that an arbitrary GBS-group is conjugacy (finite) separable if and only if it is residually finite.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107906\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000453\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000453","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设C是一类群。如果对于任意不相等(在X中不共轭)的元素X,y∈X,存在X到C的群上的同态σ使得元素xσ和yσ仍然不相等(分别在xσ中不共轭),则群X是残馀C群(共轭C可分)。广义Baumslag-Solitar群或gbs群是顶点群和边群都是无限循环的群的有限连通图的基本群。一个普通的Baumslag-Solitar群是对应于一个只包含一个顶点和一个环路的图的gbs群。假设C类是由周期群组成的,并且在取子群和无限制环积下是封闭的。证明一个不可解的gbs群是共轭c可分的当且仅当它是残馀c群。我们还发现了一个可解gbs群是共轭c可分的判据。作为一个推论,我们证明了任意gbs群是共轭(有限)可分的当且仅当它是剩余有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the conjugacy separability of ordinary and generalized Baumslag–Solitar groups
Let C be a class of groups. A group X is said to be residually a C-group (conjugacy C-separable) if, for any elements x,yX that are not equal (not conjugate in X), there exists a homomorphism σ of X onto a group from C such that the elements and are still not equal (respectively, not conjugate in ). A generalized Baumslag–Solitar group or GBS-group is the fundamental group of a finite connected graph of groups whose vertex and edge groups are all infinite cyclic. An ordinary Baumslag–Solitar group is the GBS-group that corresponds to a graph containing only one vertex and one loop. Suppose that the class C consists of periodic groups and is closed under taking subgroups and unrestricted wreath products. We prove that a non-solvable GBS-group is conjugacy C-separable if and only if it is residually a C-group. We also find a criterion for a solvable GBS-group to be conjugacy C-separable. As a corollary, we prove that an arbitrary GBS-group is conjugacy (finite) separable if and only if it is residually finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信