Yang Wang, Qian Wang, Xijun Wang, Jing Yang, Jun Jiang and Chuanyi Jia*,
{"title":"基于机器学习预测的双金属位点催化剂加速设计","authors":"Yang Wang, Qian Wang, Xijun Wang, Jing Yang, Jun Jiang and Chuanyi Jia*, ","doi":"10.1021/acs.jpclett.5c0012610.1021/acs.jpclett.5c00126","DOIUrl":null,"url":null,"abstract":"<p >Dual-metal site catalysts (DMSCs) supported on nitrogen-doped graphene have shown great potential in heterogeneous catalysis due to their unique properties and enhanced efficiency. However, the precise control and stabilization of metal dimers, particularly in oxygen activation reactions, present significant challenges in practical applications. In this study, we integrate high-throughput density functional theory calculations with machine learning techniques to predict and optimize the catalytic properties of DMSCs. Transfer learning is employed to enhance the model’s generalization capability, successfully predicting catalytic performance across new metal combinations. Additionally, the application of the SISSO method enables the derivation of interpretable symbolic regression models, revealing critical correlations between electronic structure features and catalytic efficiency. This approach not only advances the understanding of dual-metal site catalysis but also provides a novel framework for the systematic design and optimization of highly efficient catalysts, with broad applicability in catalytic science.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 6","pages":"1424–1431 1424–1431"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Design of Dual-Metal-Site Catalysts via Machine-Learning Prediction\",\"authors\":\"Yang Wang, Qian Wang, Xijun Wang, Jing Yang, Jun Jiang and Chuanyi Jia*, \",\"doi\":\"10.1021/acs.jpclett.5c0012610.1021/acs.jpclett.5c00126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dual-metal site catalysts (DMSCs) supported on nitrogen-doped graphene have shown great potential in heterogeneous catalysis due to their unique properties and enhanced efficiency. However, the precise control and stabilization of metal dimers, particularly in oxygen activation reactions, present significant challenges in practical applications. In this study, we integrate high-throughput density functional theory calculations with machine learning techniques to predict and optimize the catalytic properties of DMSCs. Transfer learning is employed to enhance the model’s generalization capability, successfully predicting catalytic performance across new metal combinations. Additionally, the application of the SISSO method enables the derivation of interpretable symbolic regression models, revealing critical correlations between electronic structure features and catalytic efficiency. This approach not only advances the understanding of dual-metal site catalysis but also provides a novel framework for the systematic design and optimization of highly efficient catalysts, with broad applicability in catalytic science.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 6\",\"pages\":\"1424–1431 1424–1431\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00126\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00126","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Accelerated Design of Dual-Metal-Site Catalysts via Machine-Learning Prediction
Dual-metal site catalysts (DMSCs) supported on nitrogen-doped graphene have shown great potential in heterogeneous catalysis due to their unique properties and enhanced efficiency. However, the precise control and stabilization of metal dimers, particularly in oxygen activation reactions, present significant challenges in practical applications. In this study, we integrate high-throughput density functional theory calculations with machine learning techniques to predict and optimize the catalytic properties of DMSCs. Transfer learning is employed to enhance the model’s generalization capability, successfully predicting catalytic performance across new metal combinations. Additionally, the application of the SISSO method enables the derivation of interpretable symbolic regression models, revealing critical correlations between electronic structure features and catalytic efficiency. This approach not only advances the understanding of dual-metal site catalysis but also provides a novel framework for the systematic design and optimization of highly efficient catalysts, with broad applicability in catalytic science.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.