基于通道分析的超分辨率成像,使用单个范德华薄层

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiahua Duan, Aitana Tarazaga Martín-Luengo, Christian Lanza, Stefan Partel, Kirill Voronin, Ana Isabel F. Tresguerres-Mata, Gonzalo Álvarez-Pérez, Alexey Y. Nikitin, Javier Martín-Sánchez, Pablo Alonso-González
{"title":"基于通道分析的超分辨率成像,使用单个范德华薄层","authors":"Jiahua Duan, Aitana Tarazaga Martín-Luengo, Christian Lanza, Stefan Partel, Kirill Voronin, Ana Isabel F. Tresguerres-Mata, Gonzalo Álvarez-Pérez, Alexey Y. Nikitin, Javier Martín-Sánchez, Pablo Alonso-González","doi":"10.1126/sciadv.ads0569","DOIUrl":null,"url":null,"abstract":"Canalization is an optical phenomenon that enables unidirectional light propagation without predefined waveguiding designs. Recently demonstrated using phonon polaritons in twisted van der Waals (vdW) layers of α-MoO <jats:sub>3</jats:sub> , it offers unprecedented possibilities for controlling light-matter interactions at the nanoscale. However, practical applications have been hindered by the complex sample fabrication of twisted stacks. In this work, we introduce a previously unexplored canalization phenomenon in a single-thin vdW layer (α-MoO <jats:sub>3</jats:sub> ) interfaced with a substrate exhibiting a given negative permittivity. This enables a proof-of-concept application of polariton canalization: super-resolution nanoimaging (~λ <jats:sub>0</jats:sub> /220). Canalization-based imaging transcends conventional projection constraints, allowing the super-resolution images to be obtained at any desired location in the image plane. This versatility stems from the synergetic manipulation of three key parameters: incident frequency, rotation angle of the thin vdW layer, and thickness. Our results provide insights into the properties of canalization and constitute a seminal step toward multifaceted photonic applications, including imaging, data transmission, and ultracompact photonic integration.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"15 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canalization-based super-resolution imaging using an individual van der Waals thin layer\",\"authors\":\"Jiahua Duan, Aitana Tarazaga Martín-Luengo, Christian Lanza, Stefan Partel, Kirill Voronin, Ana Isabel F. Tresguerres-Mata, Gonzalo Álvarez-Pérez, Alexey Y. Nikitin, Javier Martín-Sánchez, Pablo Alonso-González\",\"doi\":\"10.1126/sciadv.ads0569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canalization is an optical phenomenon that enables unidirectional light propagation without predefined waveguiding designs. Recently demonstrated using phonon polaritons in twisted van der Waals (vdW) layers of α-MoO <jats:sub>3</jats:sub> , it offers unprecedented possibilities for controlling light-matter interactions at the nanoscale. However, practical applications have been hindered by the complex sample fabrication of twisted stacks. In this work, we introduce a previously unexplored canalization phenomenon in a single-thin vdW layer (α-MoO <jats:sub>3</jats:sub> ) interfaced with a substrate exhibiting a given negative permittivity. This enables a proof-of-concept application of polariton canalization: super-resolution nanoimaging (~λ <jats:sub>0</jats:sub> /220). Canalization-based imaging transcends conventional projection constraints, allowing the super-resolution images to be obtained at any desired location in the image plane. This versatility stems from the synergetic manipulation of three key parameters: incident frequency, rotation angle of the thin vdW layer, and thickness. Our results provide insights into the properties of canalization and constitute a seminal step toward multifaceted photonic applications, including imaging, data transmission, and ultracompact photonic integration.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.ads0569\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads0569","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通道化是一种光学现象,它可以使光在没有预先设计好的波导的情况下单向传播。最近在α-MoO 3的扭曲范德华(vdW)层中使用声子极化子,它为在纳米尺度上控制光-物质相互作用提供了前所未有的可能性。然而,由于扭曲堆的样品制作复杂,实际应用受到了阻碍。在这项工作中,我们在具有给定负介电常数的衬底的单薄vdW层(α-MoO 3)中引入了一种以前未被探索过的沟通现象。这使得极化子渠化的概念验证应用成为可能:超分辨率纳米成像(~λ 0 /220)。基于解析的成像超越了传统的投影限制,允许在图像平面上的任何期望位置获得超分辨率图像。这种多功能性源于三个关键参数的协同操作:入射频率,薄vdW层的旋转角度和厚度。我们的研究结果提供了对运河化特性的见解,并构成了多方面光子应用的开创性一步,包括成像,数据传输和超紧凑光子集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canalization-based super-resolution imaging using an individual van der Waals thin layer
Canalization is an optical phenomenon that enables unidirectional light propagation without predefined waveguiding designs. Recently demonstrated using phonon polaritons in twisted van der Waals (vdW) layers of α-MoO 3 , it offers unprecedented possibilities for controlling light-matter interactions at the nanoscale. However, practical applications have been hindered by the complex sample fabrication of twisted stacks. In this work, we introduce a previously unexplored canalization phenomenon in a single-thin vdW layer (α-MoO 3 ) interfaced with a substrate exhibiting a given negative permittivity. This enables a proof-of-concept application of polariton canalization: super-resolution nanoimaging (~λ 0 /220). Canalization-based imaging transcends conventional projection constraints, allowing the super-resolution images to be obtained at any desired location in the image plane. This versatility stems from the synergetic manipulation of three key parameters: incident frequency, rotation angle of the thin vdW layer, and thickness. Our results provide insights into the properties of canalization and constitute a seminal step toward multifaceted photonic applications, including imaging, data transmission, and ultracompact photonic integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信