Xiao Lu, Heming Xia, Wei Gao, Xingquan Pan, Yue Yan, Ran Zhang, Yubin He, Yiguang Wang, Binlong Chen, Dong Mei
{"title":"一种ph响应和富含胍的纳米佐剂有效地为癌症免疫治疗提供STING激动剂","authors":"Xiao Lu, Heming Xia, Wei Gao, Xingquan Pan, Yue Yan, Ran Zhang, Yubin He, Yiguang Wang, Binlong Chen, Dong Mei","doi":"10.1021/acsnano.4c10202","DOIUrl":null,"url":null,"abstract":"As natural agonists of the stimulator of interferon genes (STING), cyclic dinucleotides (CDNs) have been identified as promising immunotherapies that trigger a potent immune response against tumors. However, the low stability, rapid clearance, inadequate cellular uptake, and inefficient cytosol localization heavily hinder the therapeutic efficacy of the hydrophilic and negatively charged 2′, 3′-cyclic-GMP-AMP (cGAMP). How to efficiently deliver cGAMP into the endoplasmic reticulum (ER) to activate STING for immune priming remains challenging. Here, we report a pH-responsive and guanidinium-rich STING nanoagonist (nPGSA) for cytosol delivery of cGAMP. Compared with free cGAMP, nPGSA achieves up to a 37.4-fold enhancement of cellular internalization. The pH-sensitive and guanidinium-functional design facilitates quick release and endosome escape, thus enabling precise ER targeting of cGAMP and 33.9-fold amplification of STING sensibilization. Furthermore, through the modulation of tumor-associated macrophage (TAM) polarization, nPGSA elicits a potent antigen-specific cellular immune response and sustained tumor regression in melanoma- and neuroblastoma-bearing mice. Our study provides a promising strategy for the delivery of cGAMP, and it offers insights into the function of cGAMP in modulating the tumor immune microenvironment for cancer immunotherapy.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"63 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pH-Responsive and Guanidinium-Rich Nanoadjuvant Efficiently Delivers STING Agonist for Cancer Immunotherapy\",\"authors\":\"Xiao Lu, Heming Xia, Wei Gao, Xingquan Pan, Yue Yan, Ran Zhang, Yubin He, Yiguang Wang, Binlong Chen, Dong Mei\",\"doi\":\"10.1021/acsnano.4c10202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As natural agonists of the stimulator of interferon genes (STING), cyclic dinucleotides (CDNs) have been identified as promising immunotherapies that trigger a potent immune response against tumors. However, the low stability, rapid clearance, inadequate cellular uptake, and inefficient cytosol localization heavily hinder the therapeutic efficacy of the hydrophilic and negatively charged 2′, 3′-cyclic-GMP-AMP (cGAMP). How to efficiently deliver cGAMP into the endoplasmic reticulum (ER) to activate STING for immune priming remains challenging. Here, we report a pH-responsive and guanidinium-rich STING nanoagonist (nPGSA) for cytosol delivery of cGAMP. Compared with free cGAMP, nPGSA achieves up to a 37.4-fold enhancement of cellular internalization. The pH-sensitive and guanidinium-functional design facilitates quick release and endosome escape, thus enabling precise ER targeting of cGAMP and 33.9-fold amplification of STING sensibilization. Furthermore, through the modulation of tumor-associated macrophage (TAM) polarization, nPGSA elicits a potent antigen-specific cellular immune response and sustained tumor regression in melanoma- and neuroblastoma-bearing mice. Our study provides a promising strategy for the delivery of cGAMP, and it offers insights into the function of cGAMP in modulating the tumor immune microenvironment for cancer immunotherapy.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c10202\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10202","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A pH-Responsive and Guanidinium-Rich Nanoadjuvant Efficiently Delivers STING Agonist for Cancer Immunotherapy
As natural agonists of the stimulator of interferon genes (STING), cyclic dinucleotides (CDNs) have been identified as promising immunotherapies that trigger a potent immune response against tumors. However, the low stability, rapid clearance, inadequate cellular uptake, and inefficient cytosol localization heavily hinder the therapeutic efficacy of the hydrophilic and negatively charged 2′, 3′-cyclic-GMP-AMP (cGAMP). How to efficiently deliver cGAMP into the endoplasmic reticulum (ER) to activate STING for immune priming remains challenging. Here, we report a pH-responsive and guanidinium-rich STING nanoagonist (nPGSA) for cytosol delivery of cGAMP. Compared with free cGAMP, nPGSA achieves up to a 37.4-fold enhancement of cellular internalization. The pH-sensitive and guanidinium-functional design facilitates quick release and endosome escape, thus enabling precise ER targeting of cGAMP and 33.9-fold amplification of STING sensibilization. Furthermore, through the modulation of tumor-associated macrophage (TAM) polarization, nPGSA elicits a potent antigen-specific cellular immune response and sustained tumor regression in melanoma- and neuroblastoma-bearing mice. Our study provides a promising strategy for the delivery of cGAMP, and it offers insights into the function of cGAMP in modulating the tumor immune microenvironment for cancer immunotherapy.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.