Shouyang Luo , Jiabao Yuan , Yanyu Song , Jiusheng Ren , Jia Qi , Mengyuan Zhu , Yisong Feng , Mengting Li , Bowen Wang , Xiaoyu Li , Changchun Song
{"title":"盐度升高降低了松嫩平原湿地微生物群落复杂性和碳、氮、磷代谢","authors":"Shouyang Luo , Jiabao Yuan , Yanyu Song , Jiusheng Ren , Jia Qi , Mengyuan Zhu , Yisong Feng , Mengting Li , Bowen Wang , Xiaoyu Li , Changchun Song","doi":"10.1016/j.watres.2025.123285","DOIUrl":null,"url":null,"abstract":"<div><div>Salinity can induce changes in the structure and function of soil microbial communities, which plays an important role in soil carbon (C), nitrogen (N) and phosphorus (P) cycling. However, there are few studies on the relationship between microbial communities and functional properties of wetland soil under elevated salinity. In this study, soil samples from Zhalong, Momoge, Niuxintaobao, and Xianghai wetlands in the Songnen Plain of China were cultured with different salinity and analyzed by metagenomic sequencing to assess the overall impact of salinity on microorganisms. The results showed that increasing soil salinity decreased soil microbial diversity and significantly changed its composition. Elevated salinity led to the replacement of core species (<em>Sphingomonas</em>) by halophilic species (<em>Halomonadaceae, Halomohas campaniensis</em>), reducing the stability of microbial ecological networks. C fixation, denitrification and purine metabolism were the key ways for the maintenance of C, N and P functions in Songnen plain wetlands, and these processes were significantly reduced with increasing salinity. Key genes involved in C, N and P metabolism include EC1.1.1.42, EC4.1.1.31, EC6.4.1.1, <em>nosZ, nirK, purB, purC, adk, purM</em>, and <em>purQ</em>. They were all effectively suppressed due to increased salinity. In summary, elevated salinity reduced the complexity of microorganisms and inhibited the related functions of C, N and P cycling, and affected the stability of wetland ecosystems. Wetland protection should be strengthened to prevent the aggravation of salinization. This study provides a new scientific framework for the restoration and management of salinized wetland ecosystems in the face of upcoming global changes.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"276 ","pages":"Article 123285"},"PeriodicalIF":12.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated salinity decreases microbial communities complexity and carbon, nitrogen and phosphorus metabolism in the Songnen Plain wetlands of China\",\"authors\":\"Shouyang Luo , Jiabao Yuan , Yanyu Song , Jiusheng Ren , Jia Qi , Mengyuan Zhu , Yisong Feng , Mengting Li , Bowen Wang , Xiaoyu Li , Changchun Song\",\"doi\":\"10.1016/j.watres.2025.123285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Salinity can induce changes in the structure and function of soil microbial communities, which plays an important role in soil carbon (C), nitrogen (N) and phosphorus (P) cycling. However, there are few studies on the relationship between microbial communities and functional properties of wetland soil under elevated salinity. In this study, soil samples from Zhalong, Momoge, Niuxintaobao, and Xianghai wetlands in the Songnen Plain of China were cultured with different salinity and analyzed by metagenomic sequencing to assess the overall impact of salinity on microorganisms. The results showed that increasing soil salinity decreased soil microbial diversity and significantly changed its composition. Elevated salinity led to the replacement of core species (<em>Sphingomonas</em>) by halophilic species (<em>Halomonadaceae, Halomohas campaniensis</em>), reducing the stability of microbial ecological networks. C fixation, denitrification and purine metabolism were the key ways for the maintenance of C, N and P functions in Songnen plain wetlands, and these processes were significantly reduced with increasing salinity. Key genes involved in C, N and P metabolism include EC1.1.1.42, EC4.1.1.31, EC6.4.1.1, <em>nosZ, nirK, purB, purC, adk, purM</em>, and <em>purQ</em>. They were all effectively suppressed due to increased salinity. In summary, elevated salinity reduced the complexity of microorganisms and inhibited the related functions of C, N and P cycling, and affected the stability of wetland ecosystems. Wetland protection should be strengthened to prevent the aggravation of salinization. This study provides a new scientific framework for the restoration and management of salinized wetland ecosystems in the face of upcoming global changes.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"276 \",\"pages\":\"Article 123285\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004313542500199X\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004313542500199X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Elevated salinity decreases microbial communities complexity and carbon, nitrogen and phosphorus metabolism in the Songnen Plain wetlands of China
Salinity can induce changes in the structure and function of soil microbial communities, which plays an important role in soil carbon (C), nitrogen (N) and phosphorus (P) cycling. However, there are few studies on the relationship between microbial communities and functional properties of wetland soil under elevated salinity. In this study, soil samples from Zhalong, Momoge, Niuxintaobao, and Xianghai wetlands in the Songnen Plain of China were cultured with different salinity and analyzed by metagenomic sequencing to assess the overall impact of salinity on microorganisms. The results showed that increasing soil salinity decreased soil microbial diversity and significantly changed its composition. Elevated salinity led to the replacement of core species (Sphingomonas) by halophilic species (Halomonadaceae, Halomohas campaniensis), reducing the stability of microbial ecological networks. C fixation, denitrification and purine metabolism were the key ways for the maintenance of C, N and P functions in Songnen plain wetlands, and these processes were significantly reduced with increasing salinity. Key genes involved in C, N and P metabolism include EC1.1.1.42, EC4.1.1.31, EC6.4.1.1, nosZ, nirK, purB, purC, adk, purM, and purQ. They were all effectively suppressed due to increased salinity. In summary, elevated salinity reduced the complexity of microorganisms and inhibited the related functions of C, N and P cycling, and affected the stability of wetland ecosystems. Wetland protection should be strengthened to prevent the aggravation of salinization. This study provides a new scientific framework for the restoration and management of salinized wetland ecosystems in the face of upcoming global changes.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.